We present a boundary feedback law that stabilizes the velocity, pressure, and electromagnetic fields in a magnetohydrodynamic (MHD) channel flow. The MHD channel flow, also known as Hartmann flow, is a benchmark for applications such as cooling, hypersonic flight, and propulsion. It involves an electrically conducting fluid moving between parallel plates in the presence of an externally imposed transverse magnetic field. The system is described by the inductionless MHD equations, a combination of the Navier–Stokes equations and a Poisson equation for the electric potential under the MHD approximation in a low magnetic Reynolds number regime. This model is unstable for large Reynolds numbers and is stabilized by actuation of velocity and the electric potential at only one of the walls. The backstepping method for stabilization of parabolic partial differential equations (PDEs) is applied to the velocity field system written in appropriate coordinates. Control gains are computed by solving a set of linear hyperbolic PDEs. Stabilization of nondiscretized 3D MHD channel flow has so far been an open problem.

1.
Hartmann
,
J.
, 1937, “
Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field
,”
K. Dan. Vidensk. Selsk. Mat. Fys. Medd.
0023-3323,
15
(
6
), pp.
1
27
.
2.
Muller
,
U.
, and
Buhler
,
L.
, 2001,
Magnetofluiddynamics in Channels and Containers
,
Springer
,
Berlin
.
3.
Schmid
,
P. J.
, and
Henningson
,
D. S.
, 2001,
Stability and Transition in Shear Flows
,
Springer
,
New York
.
4.
Högberg
,
M.
,
Bewley
,
T. R.
, and
Henningson
,
D. S.
, 2003, “
Linear Feedback Control and Estimation of Transition in Plane Channel Flow
,”
J. Fluid Mech.
0022-1120,
481
, pp.
149
175
.
5.
Vazquez
,
R.
, and
Krstic
,
M.
, 2007, “
A Closed-Form Feedback Controller for Stabilization of the Linearized 2D Navier-Stokes Poiseuille Flow
,”
IEEE Trans. Autom. Control
,
52
, pp.
2298
2312
. 0018-9286
6.
Cochran
,
J.
,
Vazquez
,
R.
, and
Krstic
,
M.
, 2006, “
Backstepping Boundary Control of Navier-Stokes Channel Flow: A 3D Extension
,”
Proceedings of the 2006 American Control Conference
.
7.
Triggiani
,
R.
, 2007, “
Stability Enhancement of a 2-D Linear Navier-Stokes Channel Flow by a 2-D, Wall-Normal Boundary Controller
,”
Discrete Contin. Dyn. Syst., Ser. B
1531-3492,
8
(
2
), pp.
279
314
.
8.
Aamo
,
O. M.
, and
Krstic
,
M.
, 2002,
Flow Control by Feedback: Stabilization and Mixing
,
Springer
,
New York
.
9.
Balogh
,
A.
,
Liu
,
W. -J.
, and
Krstic
,
M.
, 2001, “
Stability Enhancement by Boundary Control in 2D Channel Flow
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
1696
1711
.
10.
Baker
,
J.
,
Armaou
,
A.
, and
Christofides
,
P.
, 2000, “
Nonlinear Control of Incompressible Fluid Flow: Application to Burgers’ Equation and 2D Channel Flow
,”
J. Math. Anal. Appl.
0022-247X,
252
, pp.
230
255
.
11.
Vladimirov
,
V.
, and
Ilin
,
K.
, 1998, “
The Three-Dimensional Stability of Steady MHD Flows of an Ideal Fluid
,”
Phys. Plasmas
1070-664X,
5
(
12
), pp.
4199
4204
.
12.
Takashima
,
M.
, 1996, “
The Stability of the Modified Plane Poiseuille Flow in the Presence of a Transverse Magnetic Field
,”
Fluid Dyn. Res.
0169-5983,
17
, pp.
293
310
.
13.
Krasnov
,
D.
,
Zienicke
,
E.
,
Zikanov
,
O.
,
Boeck
,
T.
, and
Thess
,
A.
, 2004, “
Numerical Study of the Instability of the Hartmann Layer
,”
J. Fluid Mech.
0022-1120,
504
, pp.
183
211
.
14.
Lock
,
R.
, 1955, “
The Stability of the Flow of an Electrically Conducting Fluid Between Parallel Planes Under a Transverse Magnetic Field
,”
Proc. R. Soc. London, Ser. A
0950-1207,
233
, pp.
105
125
.
15.
Albrecht
,
T.
,
Metzkes
,
H.
,
Grundmann
,
R.
,
Mutschke
,
G.
, and
Gerbeth
,
G.
, 2008, “
Tollmien-Schlichting Wave Damping by a Streamwise Oscillating Lorentz Force
,”
Magnetohydrodynamics
,
44
(
3
), pp.
205
222
. 0024-998X
16.
Pang
,
J.
, and
Choi
,
K. -S.
, 2004, “
Turbulent Drag Reduction by Lorentz Force Oscillation
,”
Phys. Fluids
1070-6631,
16
(
5
), pp.
L35
L38
.
17.
Breuer
,
K.
,
Park
,
J.
, and
Henoch
,
C.
, 2004, “
Actuation and Control of a Turbulent Channel Flow Using Lorentz Forces
,”
Phys. Fluids
1070-6631,
16
(
4
), pp.
897
907
.
18.
Spong
,
E.
,
Reizes
,
J.
, and
Leonardi
,
E.
, 2005, “
Efficiency Improvements of Electromagnetic Flow Control
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
635
655
.
19.
Berger
,
W.
,
Kim
,
J.
,
Lee
,
C.
, and
Lim
,
J.
, 2000, “
Turbulent Boundary Layer Control Utilizing the Lorentz Force
,”
Phys. Fluids
1070-6631,
12
, pp.
631
649
.
20.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
, 1994, “
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid Mech.
0022-1120,
262
, pp.
75
110
.
21.
Baker
,
J.
, and
Christofides
,
P.
, 2002, “
Drag Reduction in Transitional Linearized Channel Flow Using Distributed Control
,”
Int. J. Control
,
75
, pp.
1213
1218
. 0020-7179
22.
Airiau
,
C.
, and
Castets
,
M.
, 2004, “
On the Amplification of Small Disturbances in a Channel Flow With a Normal Magnetic Field
,”
Phys. Fluids
1070-6631,
16
, pp.
2991
3005
.
23.
Debbagh
,
K.
,
Cathalifaud
,
P.
, and
Airiau
,
C.
, 2007, “
Optimal and Robust Control of Small Disturbances in a Channel Flow With a Normal Magnetic Field
,”
Phys. Fluids
1070-6631,
19
(
1
), p.
014103
.
24.
Thibault
,
J. -P.
, and
Rossi
,
L.
, 2003, “
Electromagnetic Flow Control: Characteristic Numbers and Flow Regimes of a Wall-Normal Actuator
,”
J. Phys. D: Appl. Phys.
0022-3727,
36
, pp.
2559
2568
.
25.
Singh
,
S.
, and
Bandyopadhyay
,
P.
, 1997, “
Linear Feedback Control of Boundary Layer Using Electromagnetic Microtiles
,”
ASME J. Fluids Eng.
0098-2202,
119
(
4
), pp.
852
858
.
26.
Barbu
,
V.
,
Popa
,
C.
,
Havarneanu
,
T.
, and
Sritharan
,
S.
, 2003, “
Exact Controllability of Magneto-Hydrodynamic Equations
,”
Commun. Pure Appl. Math.
0010-3640,
56
(
6
), pp.
732
783
.
27.
Sritharan
,
S.
,
Barbu
,
V.
,
Havarneanu
,
T.
, and
Popa
,
C.
, 2005, “
Advances in Differential Equations
,”
IEEE Trans. Autom. Control
,
10
(
5
), pp.
481
504
. 0018-9286
28.
Dietiker
,
J. -F.
, and
Hoffmann
,
K.
, 2002, “
Backstepping Boundary Control of Navier-Stokes Channel Flow: A 3D Extension
,” AIAA Paper No. 2002-0130.
29.
Schuster
,
E.
, and
Krstic
,
M.
, 2003, “
Inverse Optimal Boundary Control for Mixing in Magnetohydrodynamic Channel Flows
,”
Proceedings of the 2003 CDC
.
30.
Schuster
,
E.
,
Luo
,
L.
, and
Krstic
,
M.
, 2008, “
MHD Channel Flow Control in 2D: Mixing Enhancement by Boundary Feedback
,”
Automatica
,
44
, pp.
2498
2507
. 0005-1098
31.
Bandyopadhyay
,
P. R.
, and
Castano
,
J. M.
, 1996, “
Micro-Tiles for Electromagnetic Turbulence Control in Saltwater—Preliminary Investigations
,”
ASME Fluids Engineering Division Conference
, Vol.
2
, p.
53
.
32.
Vazquez
,
R.
,
Schuster
,
E.
, and
Krstic
,
M.
, 2008, “
Magnetohydrodynamic State Estimation With Boundary Sensors
,”
Automatica
,
44
, pp.
2517
2527
. 0005-1098
33.
Xu
,
C.
,
Schuster
,
E.
,
Vazquez
,
R.
, and
Krstic
,
M.
, 2008, “
Stabilization of Linearized 2D Magnetohydrodynamic Channel Flow by Backstepping Boundary Control
,”
Syst. Control Lett.
,
57
, pp.
805
812
. 0167-6911
34.
Bamieh
,
B.
,
Paganini
,
F.
, and
Dahleh
,
M. A.
, 2000, “
Distributed Control of Spatially-Invariant Systems
,”
IEEE Trans. Autom. Control
,
45
, pp.
1091
1107
. 0018-9286
35.
Smyshlyaev
,
A.
, and
Krstic
,
M.
, 2004, “
Closed Form Boundary State Feedbacks for a Class of Partial Integro-Differential Equations
,”
IEEE Trans. Autom. Control
0018-9286,
49
, pp.
2185
2202
.
36.
Jovanovic
,
M.
, and
Bamieh
,
B.
, 2005, “
Componentwise Energy Amplification in Channel Flows
,”
J. Fluid Mech.
0022-1120,
534
, pp.
145
183
.
37.
Reddy
,
S. C.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
, 1993, “
Pseudospectra of the Orr-Sommerfeld Operator
,”
SIAM J. Appl. Math.
0036-1399,
53
(
1
), pp.
15
47
.
38.
Lee
,
D.
, and
Choi
,
H.
, 2001, “
Magnetohydrodynamic Turbulent Flow in a Channel at Low Magnetic Reynolds Number
,”
J. Fluid Mech.
0022-1120,
439
, pp.
367
394
.
39.
Vazquez
,
R.
,
Trelat
,
E.
, and
Coron
,
J. -M.
, 2008, “
Control for Fast and Stable Laminar-to-High-Reynolds-Numbers Transfer in a 2D Navier-Stokes Channel Flow
,”
Discrete Contin. Dyn. Syst., Ser. B
1531-3492,
10
, pp.
925
956
.
40.
Sermange
,
M.
, and
Temam
,
R.
, 1983, “
Some Mathematical Questions Related to the MHD Equations
,”
Commun. Pure Appl. Math.
0010-3640,
36
, pp.
635
664
.
41.
Cochran
,
J.
, and
Krstic
,
M.
, 2008, “
Motion Planning and Trajectory Tracking for the 3-D Poiseuille Flow
,”
J. Fluid Mech.
, in press
42.
Vazquez
,
R.
, and
Krstic
,
M.
, 2008, “
Control of 1-D Parabolic PDEs With Volterra Non-Linearities, Part I: Design
,”
Automatica
,
44
, pp.
2778
2790
. 0005-1098
43.
Vazquez
,
R.
, and
Krstic
,
M.
, 2008, “
Control of 1-D Parabolic PDEs With Volterra Non-Linearities, Part II: Analysis
,”
Automatica
,
44
, pp.
2791
2803
. 0005-1098
44.
Krstic
,
M.
,
Magnis
,
L.
, and
Vazquez
,
R.
, 2008, “
Nonlinear Stabilization of Shock-Like Unstable Equilibria in the Viscous Burgers PDE
,”
IEEE Trans. Autom. Control
0018-9286,
53
, pp.
1678
1683
.
45.
Krstic
,
M.
,
Magnis
,
L.
, and
Vazquez
,
R.
, 2009, “
Nonlinear Control of the Viscous Burgers Equation: Trajectory Generation, Tracking, and Observer Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
131
(
2
), p.
021012
.
You do not currently have access to this content.