Abstract

Explicit motion-planning reference solutions are presented for flexible beams with Kelvin–Voigt (KV) damping. The goal is to generate periodic reference signals for the displacement and deflection angle at the free-end of the beam using only actuation at the base. The explicit deflection angle reference solution is found as a result of writing the shear beam model in a strict-feedback form. Special “partial differential equation (PDE) backstepping” transformations relate the strict-feedback model to a “target system,” governed by an exponentially stable wave equation with KV damping, whose displacement reference solution is relatively easy to find. The explicit beam displacement reference solution is found using the target system solution and an inverse backstepping transformation. The explicit reference solutions for the wave equation and shear beam with KV damping are novel results. State-feedback tracking boundary controllers are found by extending previous PDE backstepping stabilization results. Application of the shear beam results to the more complicated Timoshenko beam is discussed.

References

1.
Luo
,
Z. H.
,
Guo
,
B. -Z.
, and
Morgul
,
O.
, 1999,
Stability and Stabilization of Infinite Dimensional Systems With Applications
,
Springer
,
New York
.
2.
Canbolat
,
H.
,
Dawson
,
D.
, and
Nagarkatti
,
S.
, 1997, “
Boundary Control of a Flexible Cable With Actuator Dynamics
,”
Proceedings of the American Control Conference
, pp.
3547
3551
.
3.
Canbolat
,
H.
,
Dawson
,
D.
,
Rahn
,
C.
, and
Vedagarbha
,
P.
, 1997, “
Boundary Control of a Cantilevered Flexible Beam With Point-Mass Dynamics at the Free End
,”
Proceedings of the ASME Adaptive Structures Forum
, pp.
1589
1598
.
4.
de Queiroz
,
M. S.
,
Dawson
,
D. M.
,
Nagarkatti
,
S. P.
, and
Zhang
,
F.
, 2000,
Lyapunov-Based Control of Mechanical Systems
,
Birkhauser
,
Boston, MA
.
5.
Zhang
,
F.
,
Dawson
,
D. M.
,
de Quieroz
,
M. S.
, and
Vedagarbha
,
P.
, 1997, “
Boundary Control of the Timoshenko Beam With Free-End Mass/Inertia
,”
IEEE Conference on Decision and Control
.
6.
de Queiroz
,
M. S.
, and
Rahn
,
C. D.
, 2002, “
Boundary Control and Noise in Distributed Parameter Systems: An Overview
,”
Mech. Syst. Signal Process.
,
16
, pp.
19
38
. 0888-3270
7.
Spector
,
V. A.
, and
Flasher
,
H.
, 1990, “
Modeling and Design Implications of Non-Collocated Control in Flexible Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
186
193
.
8.
Udwadia
,
F. E.
, 1991, “
Noncollocated Point Control of Nondispersive Distributed-Parameter Systems Using Time Delays
,”
Appl. Math. Comput.
0096-3003,
42
, pp.
23
63
.
9.
Udwadia
,
F. E.
, 2005, “
Boundary Control, Quiet Boundaries, Super-Stability and Super-Instability
,”
Appl. Math. Comput.
0096-3003,
164
, pp.
327
349
.
10.
Yang
,
B.
, and
Mote
,
C. D.
, Jr.
, 1992, “
On Time Delay in Non-Collocated Control of Flexible Mechanical Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
409
415
.
11.
Aoustin
,
Y.
,
Fliess
,
M.
,
Mounier
,
H.
,
Rouchon
,
P.
, and
Rudolph
,
J.
, 1997, “
Theory and Practice in the Motion Planning and Control of a Flexible Robot Arm Using Mikusiński Operators
,”
Symposium on Robot Control, SYROCO97
, Vol.
2
, pp.
287
294
.
12.
Fliess
,
M.
,
Mounier
,
H.
,
Rouchon
,
P.
, and
Rudolph
,
J.
, 1995, “
Controllability and Motion Planning for Linear Delay Systems With an Application to a Flexible Rod
,”
Proceedings of the 34th IEEE Conference on Decision and Control
, pp.
2046
2051
.
13.
Mounier
,
H.
,
Rudolph
,
J.
,
Fliess
,
M.
, and
Rouchon
,
P.
, 1998, “
Tracking Control of a Vibrating String With an Interior Mass Viewed as a Delay System
,” ESAIM:
COCV
1292-8119,
3
, pp.
315
321
.
14.
Murray
,
R. M.
, 1996, “
Trajectory Generation for a Towed Cable System Using Differential Flatness
,”
IFAC World Congress
.
15.
Petit
,
N.
, and
Rouchon
,
P.
, 2001, “
Flatness of Heavy Chain Systems
,”
SIAM J. Control Optim.
0363-0129,
40
, pp.
475
495
.
16.
Rouchon
,
P.
, 2001, “
Motion Planning, Equivalence, Infinite Dimensional Systems
,”
Int. J. Appl. Math Comput. Sci.
0867-857X,
11
(
1
), pp.
165
188
.
17.
Krstic
,
M.
,
Guo
,
B. -Z.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
, 2008, “
Control of a Tip-Force Destabilized Shear Beam by Observer-Based Boundary Feedback
,”
SIAM J. Control Optim.
, 0363-0129
47
, pp.
553
574
18.
Krstic
,
M.
, and
Balogh
,
A.
, 2006. “
Backstepping Boundary Controller and Observer for the Undamped Shear Beam
,”
17th International Symposium on Mathematical Theory of Networks and Systems
.
19.
Krstic
,
M.
,
Siranosian
,
A. A.
, and
Smyshlyaev
,
A.
, 2006, “
Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part I—Design
,”
Proceedings of the American Control Conference
.
20.
Krstic
,
M.
,
Siranosian
,
A. A.
,
Smyshlyaev
,
A.
, and
Bement
,
M.
, 2006, “
Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part II—Stability and Simulations
,”
Proceedings of the IEEE Conference on Decision and Control
.
21.
Dubois
,
F.
,
Petit
,
N.
, and
Rouchon
,
P.
, 1999, “
Motion Planning and Nonlinear Simulations for a Tank Containing Fluid
,”
Proceedings of the Fifth European Control Conference
.
22.
Fliess
,
M.
,
Mounier
,
H.
,
Rouchon
,
P.
, and
Rudolph
,
J.
, 1998, “
A Distributed Parameter Approach to the Control of a Tubular Reactor: A Multi-Variable Case
,”
Proceedings of the 37th IEEE Conference on Decision and Control
, pp.
439
442
.
23.
Laroche
,
B.
,
Martin
,
P.
, and
Rouchon
,
P.
, 1998, “
Motion Planning for a Class of Partial Differential Equations With Boundary Control
,”
Proceedings of the 37th IEEE Conference on Decision and Control
.
24.
Krstic
,
M.
,
Guo
,
B. -Z.
,
Balogh
,
A.
, and
Smyshlyaev
,
A.
, 2008, “
Output-Feedback Stabilization of an Unstable Wave Equation
,”
Automatica
, 0005-1098
44
, pp.
63
74
.
25.
Krstic
,
M.
,
Siranosian
,
A. A.
,
Balogh
,
A.
, and
Guo
,
B. -Z.
, 2007, “
Control of Strings and Flexible Beams by Backstepping Boundary Control
,”
Proceedings of the American Control Conference
.
26.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
, 1999, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
0022-460X,
225
, pp.
935
988
.
27.
Zhao
,
H. L.
,
Liu
,
K. S.
, and
Zhang
,
C. G.
, 2004, “
Stability for the Timoshenko Beam System With Local Kelvin-Voigt Damping
,”
Acta Math. Sin. English Ser.
1000-9574,
21
(
3
), pp.
655
666
.
28.
Taylor
,
S. W.
, and
Yau
,
S. C. B.
, 2003, “
Boundary Control of a Rotating Timoshenko Beam
,”
ANZIAM J.
1446-8735,
44
, pp.
E143
E184
.
You do not currently have access to this content.