In this paper, we investigate the problem of robust synthesis of a static output feedback controller, with guaranteed cost, in the context of multiple parametric uncertainties. To solve this problem, a random optimization technique based on a bisection method is proposed. The principle is as follows: For a given initial stabilizing controller of the nominal system, the proposed approach iteratively generates a sequence of matrices with a decreasing cost. By a bisection method, this procedure is stopped when the controller reaches the best possible nominal performance that satisfies a given guaranteed cost. Numerical examples show the practical applicability of the proposed method.
1.
Bernstein
, D.
, 1992, “Some Open Problems in Matrix Theory Arising in Linear Systems and Control
,” Linear Algebr. Appl.
0024-3795, 162–164
, pp. 409
–432
.2.
Syrmos
, V. L.
, Abdallah
, C. T.
, Dorato
, P.
, and Grigoriadis
, K.
, 1997, “Static Output Feedback-A Survey
,” Automatica
0005-1098, 33
(2
), pp. 125
–137
.3.
Astolfi
, A.
, and Colenari
, P.
, 2005, “Hankel/Toeplitz Matrices and the Static Output Feedback Stabilization Problem
,” Math. Control, Signals, Syst.
0932-4194, 17
(4
), pp. 231
–268
.4.
Garcia
, G.
, Pradin
, B.
, Tabouriech
, S.
, and Zeng
, F.
, 2003, “Robust Stabilization and Guaranteed Cost Control for Discrete-Time Linear Systems by Static Output Feedback
,” Automatica
0005-1098, 39
(9
), pp. 1635
–1641
.5.
Geromel
, J. C.
, Souza
, C. C.
, and Skelton
, R. E.
, 1998, “Static Output Feedback Controllers: Stability and Convexity
,” IEEE Trans. Autom. Control
0018-9286, 43
, pp. 120
–125
.6.
Hagander
, P.
, and Bernhardsson
, B.
, 1990, “On the Notion of Strong Stabilization
,” IEEE Trans. Autom. Control
0018-9286, AC-35
, pp. 927
–929
.7.
Youla
, D.
, Bongiorno
, J.
, and Lu
, C.
, 1974, “Single Loop Feedback Stabilization of Linear Multivariable Dynamical Systems
,” Automatica
0005-1098, 10
, pp. 159
–173
.8.
Gu
, G.
, 1990, “On the Existence of Linear Optimal Control With Output Feedback
,” SIAM J. Control Optim.
0363-0129, 28
, pp. 711
–719
.9.
Kucera
, V.
, and De Souza
, C. E.
, 1995, “A Necessary and Sufficient Condition for Output Feedback Stabilization
,” Automatica
0005-1098, 31
(9
), pp. 1357
–1359
.10.
Trofino-Neto
, A.
, and Kucera
, V.
, 1993, “Stabilization via Static Output Feedback
,” IEEE Trans. Autom. Control
0018-9286, 38
, pp. 764
–765
.11.
Arzelier
, D.
, and Peaucelle
, D.
, 2002, “An Iterative Method for Mixed h2∕h∞ Synthesis via Static Output-Feedback
,” 41st IEEE Conference on Decision and Control (CDC’2002)
, Las Vegas, NV, pp. 3464
–3469
.12.
Benton
, R. E.
, and Smith
, D.
Jr., 1998, “Static Output Feedback Stabilization With Prescribed Degree of Stability
,” IEEE Trans. Autom. Control
0018-9286, 43
(10
), pp. 1493
–1496
.13.
Cao
, Y.
, Lam
, J.
, and Sun
, Y.-X. M.
, 1998, “Static Output Feedback Stabilization: An ILMI Approach
,” Automatica
0005-1098, 34
(12
), pp. 1641
–1645
.14.
Chilali
, M.
, Gahinet
, P.
, and Apkarian
, P.
, 1999, “Robust Pole-Placement in LMI Regions
,” IEEE Trans. Autom. Control
0018-9286, 44
(12
), pp. 2257
–2270
.15.
El Ghaoui
, L.
, Oustry
, F.
, and AitRami
, M.
, 1997, “A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,” IEEE Trans. Autom. Control
0018-9286, 42
, pp. 1171
–1176
.16.
Henrion
, D.
, Tabouriech
, S.
, and Garcia
, G.
, 1999, “Output Feedback Robust Stabilization of Uncertain Linear Systems With Saturating Controls. An LMI Approach
,” IEEE Trans. Autom. Control
0018-9286, 44
(11
), pp. 2230
–2237
.17.
Leibfritz
, F.
, 2001, “An LMI-Based Algorithm for Designing Suboptimal Static h2∕h∞ Output-Feedback Controllers
,” SIAM J. Control Optim.
0363-0129, 39
(6
), pp. 1711
–1735
.18.
Peaucelle
, D.
, and Arzelier
, D.
, 2001, “An Efficient Numerical Solution for h2 Static Output Feedback Synthesis
,” European Control Conference (ECC’01)
, Porto, Portugal, pp. 3800
–3805
.19.
Feron
, E.
, Boyd
, S.
, El Ghaoui
, L.
, and Balakrishnan
, V.
, 1994, Linear Matrix Inequalities in System and Control Theory
, in Studies in Applied Mathematics
, SIAM
, Philadelphia, PA.20.
Davison
, E. J.
, and Wang
, S. H.
, 1975, “On Pole Assignment in Linear Multivariable Systems Using Output Feedback
,” IEEE Trans. Autom. Control
0018-9286, 8
, pp. 516
–518
.21.
Kimura
, H.
, 1977, “A Further Result on the Problem of Pole Assignment by Output Feedback
,” IEEE Trans. Autom. Control
0018-9286, 25
(3
), pp. 458
–463
.22.
Wang
, X. A.
, 1996, “Grassmannian, Central Projection, and Output Feedback Pole Assignment of Linear Systems
,” IEEE Trans. Autom. Control
0018-9286, 41
(6
), pp. 786
–794
.23.
Toscano
, R.
, and Lyonnet
, P.
, 2006, “Stabilization of Systems by Static Output Feedback via Heuristic Kalman Algorithm
,” Comput. Appl. Math.
0101-8205, 5
, pp. 1
–12
.24.
Toscano
, R.
, 2000, “A Simple Method to Find a Robust Output Feedback Controller by Random Search Approach
,” ISA Trans.
0019-0578, 45
(1
), pp. 35
–44
.25.
Matyas
, J.
, 1965, “Random Optimization
,” Autom. Remote Control (Engl. Transl.)
0005-1179, 26
(2
), pp. 246
–253
.26.
Spall
, J. C.
, 2003, Introduction to Stochastic Search and Optimization
, John Wiley and Sons
, New York.27.
Tempo
, R.
, Calafiore
, G.
, and Dabbene
, F.
, 2004, Randomized Algorithms for Analysis and Control of Uncertain Systems
, Springer-Verlag
, Berlin.28.
Sun
, C. C.
, Chung
, H. Y.
, and Chang
, W. J.
, 2005, “h2∕h∞ Robust Static Output Feedback Control Design via Mixed Genetic Algorithm and Linear Matrix Inequalities
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 127
, pp. 715
–722
.29.
VanAntwerp
, J. G.
, and Braatz
, R. D.
, 2000, “A Tutorial on Linear and Bilinear Matrix Inequalities
,” J. Process Control
0959-1524, 10
, pp. 363
–385
.30.
Doyle
, J.
, Francis
, B.
, and Tannenbaum
, A.
, 1990, Feedback Control Theory
, Macmillan Publishing Co.
, New York.31.
Anderson
, B. D. O.
, and Moore
, J. B.
, 1989, Optimal Control, Linear Quadratic Methods
, Prentice-Hall
, Englewood Cliffs, NJ.32.
Polyak
, B. T.
, and Tempo
, R.
, 2001, “Probabilistic Robust Design With Linear Quadratic Regulators
,” Syst. Control Lett.
0167-6911, 43
, pp. 343
–353
.33.
Larin
, V. B.
, 2003, “Stabilization of the System by Static Output Feedback
,” Comput. Appl. Math.
0101-8205, 2
(1
), pp. 2
–12
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.