This paper studies a new FAMOS strategy for suspension control. FAMOS stands for frequency-adaptive multi-objective suspension. This strategy adjusts the control law based on certain frequency information and achieves a balanced ride and handling performance. It contains a road profile identifier, several multi-objective control laws which optimize a mixed H2/H performance index based on different performance preferences, and an adaptive law based on the frequency contents estimated from the identified road profile. The strategy is applied to a quarter car suspension control and the simulation results show that the achieved performance is better than many existing results.

1.
Alleyne
,
A.
, and
Hedrick
,
J. K.
,
1995
, “
Nonlinear Adaptive Control of Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
,
3
, pp.
94
101
.
2.
Alleyne
,
A.
, and
Liu
,
R.
,
1999
, “
On the Limitations of Force Tracking Control of Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
(
2
), pp.
184
190
.
3.
DeJager
,
A. G.
,
1991
, “
Comparison of Two Methods for the Design of Active Suspension Systems
,”
Opt. Control Appl. Methods
,
12
, pp.
173
188
.
4.
Fialho
,
D. I.
, and
Balas
,
G. J.
,
2002
, “
Road-Adaptive Active Suspension Design Using Linear-Parameter-Varying Gain-Scheduling
,”
IEEE Trans. Control Syst. Technol.
,
10
, pp.
43
54
.
5.
Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., 1995, LMI Control Toolbox for Use with Matlab. The Mathworks Inc., Natick, MA.
6.
Hrovat
,
D.
,
1990
, “
Optimal Active Suspension Structures for Quarter-Car Vehicle Models
,”
Automatica
,
26
, pp.
845
860
.
7.
Hrovat
,
D.
,
1982
, “
A Class of Active LQG Optimal Actuators
,”
Automatica
,
18
, pp.
117
119
.
8.
Hrovat
,
D.
,
1997
, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
,
33
, pp.
1781
1816
.
9.
Karnopp
,
D.
,
Crosby
,
M. J.
, and
Harwood
,
R. A.
,
1974
, “
Vibration Control Using Semi-Active Force Generators
,”
J. Eng. Ind.
,
96
, pp.
619
626
.
10.
Lu
,
J.
, and
DePoyster
,
M.
,
2002
, “
Multi-Objective Optimal Suspension Control to Achieve Integrated Ride and Handling Performance
,”
IEEE Trans. Control Syst. Technol.
,
10
, pp.
807
821
.
11.
Sharp
,
R. S.
, and
Crolla
,
D. A.
,
1987
, “
Road Vehicle Suspension System Design—a Review
,”
Veh. Syst. Dyn.
,
16
, pp.
167
192
.
12.
Skelton, R. E., Iwasaki, T., and Grigoriadis, K., 1997, A Unified Algebraic Approach to Control Design, Taylor and Francis, London.
13.
Smith
,
M. C.
,
1995
, “
Achievable Dynamic Response for Automotive Active Suspensions
,”
Veh. Syst. Dyn.
,
pp.
1
34
.
14.
Yue
,
C.
,
Butsuen
,
T.
, and
Hedrick
,
J. K.
,
1989
, “
Alternative Control Laws for Automotive Active Suspensions
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
286
291
.
You do not currently have access to this content.