An algorithm for calculating design bounds in multivariable quantitative feedback theory (QFT) tracking design is presented. The algorithm solves the problem of trade-off between on- and off-diagonal constraints.

1.
Horowitz
,
I.
,
1979
, “
Quantitative Synthesis of Uncertain Multiple Input-Output Systems
,”
Int. J. Control
,
30
, pp.
81
106
.
2.
Horowitz
,
I.
,
1982
, “
Improved Design Technique for Uncertain Multiple-Input-Multiple-Output Feedback Systems
,”
Int. J. Control
,
36
, pp.
977
988
.
3.
Horowitz
,
I.
,
1991
, “
Survey of Quantitative Feedback Theory (QFT)
,”
Int. J. Control
,
53
, pp.
255
291
.
4.
Horowitz, I., 1993, Quantitative Feedback Design Theory, QFT Publications, Boulder, Colorado, Vol. 1.
5.
Chait
,
Y.
, and
Yaniv
,
O.
,
1993
, “
Multi-Input/Single-Output Computer Aided Control Design Using the Quantitative Feedback Theory
,”
Int. J. Robust Nonlinear Control
,
3
, pp.
47
54
.
6.
Borghesani, C., Chait, Y., and Yaniv, O., 1998, MatlabTM Quantitative Feedback Theory Toolbox, Mathworks Inc.
7.
Cheng
,
C.-C.
,
Liao
,
Y.-K.
, and
Wang
,
T.-S.
,
1996
, “
Quantitative Feedback Design of Uncertain Multivariable Control Systems
,”
Int. J. Control
,
65
, pp.
537
553
.
8.
Boje
,
E.
,
2003
, “
Non-Diagonal Controllers in MIMO Quantitative Feedback Design
,”
Int. J. Robust Nonlinear Control
, vol.
12
, no.
4
, pp.
303
320
.
9.
Boje
,
E.
,
2000
, “
Finding Non-Convex Hulls of QFT Templates
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
230
232
.
You do not currently have access to this content.