An algorithm for calculating design bounds in multivariable quantitative feedback theory (QFT) tracking design is presented. The algorithm solves the problem of trade-off between on- and off-diagonal constraints.
Issue Section:
Technical Briefs
1.
Horowitz
, I.
, 1979
, “Quantitative Synthesis of Uncertain Multiple Input-Output Systems
,” Int. J. Control
, 30
, pp. 81
–106
.2.
Horowitz
, I.
, 1982
, “Improved Design Technique for Uncertain Multiple-Input-Multiple-Output Feedback Systems
,” Int. J. Control
, 36
, pp. 977
–988
.3.
Horowitz
, I.
, 1991
, “Survey of Quantitative Feedback Theory (QFT)
,” Int. J. Control
, 53
, pp. 255
–291
.4.
Horowitz, I., 1993, Quantitative Feedback Design Theory, QFT Publications, Boulder, Colorado, Vol. 1.
5.
Chait
, Y.
, and Yaniv
, O.
, 1993
, “Multi-Input/Single-Output Computer Aided Control Design Using the Quantitative Feedback Theory
,” Int. J. Robust Nonlinear Control
, 3
, pp. 47
–54
.6.
Borghesani, C., Chait, Y., and Yaniv, O., 1998, MatlabTM Quantitative Feedback Theory Toolbox, Mathworks Inc.
7.
Cheng
, C.-C.
, Liao
, Y.-K.
, and Wang
, T.-S.
, 1996
, “Quantitative Feedback Design of Uncertain Multivariable Control Systems
,” Int. J. Control
, 65
, pp. 537
–553
.8.
Boje
, E.
, 2003
, “Non-Diagonal Controllers in MIMO Quantitative Feedback Design
,” Int. J. Robust Nonlinear Control
, vol. 12
, no. 4
, pp. 303
–320
.9.
Boje
, E.
, 2000
, “Finding Non-Convex Hulls of QFT Templates
,” ASME J. Dyn. Syst., Meas., Control
, 122
, pp. 230
–232
.Copyright © 2004
by ASME
You do not currently have access to this content.