The paper is to investigate the asymptotic stability for a general class of linear time-invariant singularly perturbed systems with multiple non-commensurate time delays. It is a common practice to investigate the asymptotic stability of the original system by establishing that of its slow subsystem and fast subsystem. A frequency-domain approach is first presented to determine a sufficient condition for the asymptotic stability of the slow subsystem (reduced-order model), which is a singular system with multiple time delays, and the fast subsystem. Two delay-dependent criteria, ε-dependent and ε-independent, are then proposed in terms of the H-norm for the asymptotic stability of the original system. Furthermore, a simple estimate of an upper bound ε* of singular perturbation parameter ε is proposed so that the original system is asymptotically stable for any ε0,ε*. Two numerical examples are provided to illustrate the use of our main results.

1.
Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic, New York (republished by SIAM Classics in Applied Mathematics, 1999).
2.
Chen
,
C. C.
,
1998
, “
Global Exponential Stabilization for Nonlinear Singularly Perturbed Systems
,”
IEE Proc.: Control Theory Appl.
,
145
, pp.
377
382
.
3.
Khalil
,
H. K.
,
1989
, “
Feedback Control of Nonstandard Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control
,
34
, pp.
1052
1060
.
4.
Chen
,
C. F.
,
Pan
,
S. T.
, and
Hsieh
,
J. G.
,
2002
, “
Stability Analysis for a Class of Uncertain Discrete Singularly Perturbed Systems with Multiple Time Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
124
, pp.
467
472
.
5.
Lin
,
C. L.
, and
Chen
,
B. S.
,
1992
, “
On the Design of Stabilizing Controllers for Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control
,
37
, pp.
1828
1834
.
6.
Shao
,
Z.
, and
Rowland
,
J. R.
,
1995
, “
Stability of Time-Delay Singularly Perturbed Systems
,”
IEE Proc.: Control Theory Appl.
,
142
, pp.
111
113
.
7.
Pan
,
S. T.
,
Hsiao
,
F. H.
, and
Teng
,
C. C.
,
1996
, “
Stability Bound of Multiple Time Delay Singularly Perturbed Systems
,”
Electron. Lett.
,
32
, pp.
1327
1328
.
8.
Wang
,
Z.
,
Huang
,
B.
, and
Unbehauen
,
H.
,
1999
, “
Robust Reliable Control for A Class of Uncertain Nonlinear Stated-delayed Systems
,”
Automatica
,
35
, pp.
955
963
.
9.
Lien, C. H., and Hsieh, J. G., 2000, “New Results on Global Exponential Stability of Interval Time-delay Systems,” 43, pp. 306–310.
10.
Lien
,
C. H.
,
Sun
,
Y. J.
, and
Hsieh
,
J. G.
,
1999
, “
Global Stabilizability for a Class of Uncertain Systems with Multiple Time-Varying Delays via Linear Control
,”
Int. J. Control
,
72
, pp.
904
910
.
11.
Oucheriah
,
S.
,
1999
, “
Adaptive Control of a Class of Uncertain Dynamic Delay Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
538
541
.
12.
Trinh
,
H.
,
1999
, “
Linear Functional State Observer for Time-Delay Systems
,”
Int. J. Control
,
72
, pp.
1642
1658
.
13.
Yu
,
T. J.
, and
Muller
,
P. C.
,
1994
, “
Design of Controllers for Linear Mechanical Singular Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
628
634
.
14.
Xu
,
S.
,
Lam
,
J.
, and
Zhang
,
L.
,
2002
, “
Robust D-stability Analysis for Uncertain Discrete Singular Systems with State Delay
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
49
, pp.
551
555
.
You do not currently have access to this content.