This article addresses the optimal (minimal input energy) design of scan trajectories, which is important in applications such as the imaging and manipulation of nano-scale surface phenomena using scanning tunneling microscopes (STM), MEMS-based micro-scanners, quick-return mechanisms and cams used in manufacturing, and general repeating processes. The contribution of this article is the systematic solution of the optimal scan-trajectory design problem. As opposed to existing techniques that require pre-specification of the desired output trajectory (such prespecifications can be ad hoc), the optimal output trajectory is found as a result of the proposed input-energy minimization approach. In this sense, the proposed approach leads to a systematic solution of the optimal output-trajectory-design problem. The proposed optimal scanning method is applied to an experimental scanning tunneling microscope; simulation and experimental results are presented to illustrate the efficacy of the proposed approach to design optimal scan-trajectories.

1.
Barrett
,
R.
, and
Quate
,
C.
,
1991
,
Optical scan-correction system applied to atomic force microscopy
.
Rev. Sci. Instrum.
,
62
(
6
),
1393
1399
.
2.
Cai
,
C.
,
Chen
,
X.
,
Shu
,
Q.
, and
Zheng
,
X.
, Dec.,
1993
,
Computer correction for distorted stm images
.
Rev. Sci. Instrum.
,
63
(
12
),
5649
5652
.
3.
Cloet, C., Tomizuka, M., and Horowitz, R., July 2001, Design requirements and reference trajectory generation for a copier paper-path. IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, pages 911–916. Como, Italy.
4.
Croft
,
D.
, and
Devasia
,
S.
, December
1999
,
Vibration compensation for high speed scanning tunneling microscopy
.
Rev. Sci. Instrum.
,
70
(
12
),
4600
4605
.
5.
Curtis
,
R.
,
Mitsui
,
T.
, and
Ganz
,
E.
,
1997
,
An ultrahigh vacuum high speed scanning tunneling microscope
.
Rev. Sci. Instrum.
,
68
,
2790
2796
.
6.
Daniele, A., Salapaka, S., Salapaka, M., and Dahleh, M., June 1999, Piezoelectric scanners for atomic force microscopes: Design of lateral sensors, indentification and control. In Proceedings of the American Control Conference, pages 253–257, San Diego, CA.
7.
Devasia
,
S.
, Nov.
2002
,
Should model-based inverse input be used as feedforward under plant uncertainty
.
IEEE Trans. Autom. Control
,
47
(
11
),
1865
1871
.
8.
Devasia
,
S.
,
Chen
,
D.
, and
Paden
,
B.
,
1996
,
Nonlinear inversion-based output tracking
.
IEEE Trans. Autom. Control
,
41
(
7
),
930
942
.
9.
Dewey
,
J. S.
,
Leang
,
K.
, and
Devasia
,
S.
,
1998
,
Experimental and theoretical results in output-trajectory redesign for flexible structures
.
ASME J. Dyn. Syst., Meas., Control
,
120
,
456
461
.
10.
Dowd
,
A. V.
, and
Thanos
,
M. D.
, October
2000
,
Vector motion processing using spectral windows
.
IEEE Control Syst. Mag.
,
20
(
5
),
8
19
.
11.
Fung
,
R.-F.
,
Huang
,
J. S.
,
Chien
,
C. G.
, and
Wang
,
Y. C.
,
2000
,
Design and application of a continuous repetitive controller for rotating mechanisms
.
International Journal of Mechanical Sciences
,
42
,
1805
1819
.
12.
Ghosh
,
J.
, and
Paden
,
B.
, May
2000
,
Nonlinear repetitive control
.
IEEE Trans. Autom. Control
,
45
(
5
),
949
954
.
13.
Gupta
,
N. K.
, Nov
1980
,
Frequency-shaped cost functionals: Extension of linear-quadratic-gaussian design methods
.
J. Guid. Control
,
3
(
6
),
529
535
.
14.
J., G. H. and (Editors), W. R., 1994, Scanning Tunneling Microscopy I. Surface Sciences. Springer-Verlag, Berlin Heidelberg, 2nd edition.
15.
Lewis, F. L., and Syrmos, V. L., 1995, Optimal Control. John Wiley & Sons, Inc., Third Avenue, New York, NY 10158–0012.
16.
Moore
,
K. L.
, and
Xu
,
J.-X. E.
,
2000
,
Special issue on iterative learning control
.
Int. J. Control
,
73
(
10
),
57
57
.
17.
Ortega, J. M., 1987, Matrix Theory. The university series in mathematics. 1987 Plenum Press, New York., 233 Spring Street, New York, NY 10013.
18.
Piazzi
,
A.
, and
Visioli
,
A.
, March
2000
,
Minimum-time system-inversion-based motion planning for residual vibration reduction
.
IEEE/ASME Trans. Mechatron.
,
5
(
1
),
12
22
.
19.
Pitas, I., 2000, Digital Image Processing Algorithms and Applications. John Wiley & Sons, Inc.
20.
Sain
,
M. K.
, and
Massey
,
J. L.
,
1969
,
Invertibility of linear time-invariant dynamical systems
.
IEEE Trans. Autom. Control
,
14
,
141
149
.
21.
Sastry, S., 1999, Nonlinear Systems. Analysis, Stability and Control, volume 10 of Interdisciplinary applied mathematics. Springer-Verlag New York, Inc, 175 Fifth Avenue, New York, NY 10010.
22.
Silverman
,
L. M.
,
1969
,
Inversion of multivariable linear systems
.
IEEE Trans. Autom. Control
,
14
(
3
),
270
276
.
23.
Urey, H., Wine, D., and Lewis, J. R., January 1999, Scanner design and resolution tradeoffs for miniature scanning displays. Conference on Flat Panel Display Technology (Proc. of SPIE), 3636, 60–68. San Jose, CA.
24.
Vandervoort
,
K. G.
,
Zasadzinski
,
R. K.
,
Galicia
,
G. G.
, and
Crabtree
,
G. W.
, Apr.,
1993
,
Full temperature calibration from 4 to 300 k of the voltage response of piezoelectric tube scanner pzt-5a for use in scanning tunneling microscopes
.
Rev. Sci. Instrum.
,
64
(
4
),
896
899
.
25.
Vig
,
J. R.
, and
Kim
,
Y.
, Jul/Aug
1999
,
Noise in microelectromechanical system resonators
.
IEEE Trans. on Ultrasonics, Ferroelectronics, and Frequency Control
,
46
(
6
),
1558
1565
.
26.
Whitesides
,
G. M.
, and
Love
,
H. C.
,
2001
,
The art of building small
.
Sci. Am.
,
285
(
3
),
39
47
.
27.
Wiesendanger, R., editor, 1994, Scanning Probe Microscopy and Spectroscopy. Cambridge University Press.
28.
Wilder
,
K.
,
Soh
,
H. T.
,
Atalar
,
A.
, and
Quate
,
C. F.
,
1999
,
Nanometer-scale patterning and individual current controlled lithography using multiple scanning probes
.
Rev. Sci. Instrum.
,
70
,
2822
2827
.
29.
Zou
,
Q.
, and
Devasia
,
S.
, December
1999
,
Preview-based stable-inversion for output tracking of linear systems
.
ASME J. Dyn. Syst., Meas., Control
,
121
625
630
.
You do not currently have access to this content.