Fuel Cells are electrochemical devices that convert the chemical energy of a gaseous fuel directly into electricity. They are widely regarded as a potential future stationary and mobile power source. The response of a fuel cell system depends on the air and hydrogen feed, flow and pressure regulation, and heat and water management. In this paper, we develop a dynamic model suitable for the control study of fuel cell systems. The transient phenomena captured in the model include the flow and inertia dynamics of the compressor, the manifold filling dynamics (both anode and cathode), reactant partial pressures, and membrane humidity. It is important to note, however, that the fuel cell stack temperature is treated as a parameter rather than a state variable of this model because of its long time constant. Limitations and several possible applications of this model are presented.

1.
Yang, W-C., Bates, B., Fletcher, N., and Pow, R., Control Challenges and Methodologies in Fuel Cell Vehicle Development, SAE Paper 98C054.
2.
Guzzella, L., 1999, Control Oriented Modelling of Fuel-Cell Based Vehicles, Presentation in NSF Workshop on the Integration of Modeling and Control for Automotive Systems.
3.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
,
1995
, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell,
J. Electrochem. Soc.
,
142
(
1
), pp.
9
15
.
4.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, A Mathematical model of the solid polymer electrolyte fuel cell,
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
5.
Lee
,
J. H.
, and
Lalk
,
T. R.
,
1998
, Modeling fuel cell stack systems,
J. Power Sources
,
73
, pp.
229
241
.
6.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, Polymer Electrolyte Fuel Cell Model,
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
7.
Barbir, F., Balasubramanian, B., and Neutzler, J., 1999, Trade-off design analysis of operating pressure and temperature in PEM fuel cell systems, Proceedings of the ASME Advanced Energy Systems Division, v. 39, pp. 305–315.
8.
Friedman, D. J., Egghert, A., Badrinarayanan, P., and Cunningham, J., Balancing stack, air supply and water/thermal management demands for an indirect methanol PEM fuel cell system, SAE Paper 2001-01-0535.
9.
Akella, S., Sivashankar, N., and Gopalswamy, S., 2001, Model-based systems analysis of a hybrid fuel cell vehicle configuration, Proceedings of 2001 American Control Conference.
10.
Atwood, P., Gurski, S., Nelson, D. J., Wipke, K. B., and Markel, T., 2001, Degree of hybridization ADVISOR modeling of a fuel cell hybrid electric sport utility vehicle, Proceedings of 2001 Joint ADVISOR/PSAT vehicle systems modeling user conference, pp. 147–155.
11.
Boettner, D. D., Paganelli, G., Guezennec, Y. G., Rizzoni, G., and Moran, M. J., 2001, Component power sizing and limits of operation for proton exchange membrane (PEM) fuel cell/battery hybrid automotive applications, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition.
12.
Turner, W., Parten, M., Vines, D., Jones, J., and Maxwell, T., 1999, Modeling a PEM fuel cell for use in a hybrid electric vehicle, Proceedings of the 1999 IEEE 49th Vehicular Technology Conference, v.2, pp. 1385–1388.
13.
Boettner, D. D., Paganelli, G., Guezennec, Y. G., Rizzoni, G., and Moran, M. J., 2001, Proton exchange membrane (PEM) fuel cell system model for automotive vehicle simulation and control, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition.
14.
Hauer, K.-H., Friedmann, D. J, Moore, R. M., Ramaswamy, S., Eggert, A., and Badrinarayana, P., Dynamic Response of an Indirect-Methanol Fuel Cell Vehicle, SAE Paper 2000-01-0370.
15.
Padulles, J., Ault, G. W., Smith, C. A., and McDonald, J. R., 1999, Fuel cell plant dynamic modeling for power systems simulation, Proceedings of 34th Universities Power Engineering Conference, v. (34),1, pp. 21–25.
16.
Pischinger, S., Scho¨nfelder, C., Bornscheuer, W., Kindl, H., and Wiartalla, A., Integrated Air Supply and Humidification Concepts for Fuel Cell Systems, SAE Paper 2001-01-0233.
17.
Watanabe
,
M.
,
Uchida
,
H.
,
Emori
,
M.
,
April
1998, Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells,
J. Electrochem. Soc.
,
145
(
4
), pp.
1137
1141
.
18.
Larminie, J. and Dicks, A., 2000, Fuel Cell Systems Explained, West Sussex, England, John Wiley & Sons Inc.
19.
Lee
,
J. H.
,
Lalk
,
T. R.
, and
Appleby
,
A. J.
,
1998
, Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks,
J. Power Sources
,
70
, pp.
258
268
.
20.
Kordesch, K. and Simader, G., 1996, Fuel Cells and Their Applications, Weinheim, Germany, VCH.
21.
Laurencelle
,
F.
,
Chahine
,
R.
,
Hamelin
,
J.
,
Agbossou
,
K.
,
Fournier
,
M.
,
Bose
,
T. K.
, and
Laperriere
,
A.
,
2001
, Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack,
Fuel Cells Journal
,
1
(
1
), pp.
66
71
.
22.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
,
1994
, Parametric modelling of the performance of a 5-kW protonexchange membrane fuel cell stack,
J. Power Sources
,
49
, pp.
349
356
.
23.
Nguyen
,
T. V.
, and
White
,
R. E.
,
1993
, A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,
J. Electrochem. Soc.
,
140
(
8
), pp.
2178
2186
.
24.
Mann
,
R. F.
et al.
,
2000
, Development and application of a generalized steady-state electrochemical model for a PEM fuel cell,
J. Power Sources
,
86
, pp.
173
180
.
25.
Baschuk
,
J. J.
, and
Li
,
X.
,
2000
, Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding,
J. Power Sources
,
86
, pp.
186
191
.
26.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2001
, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell,
Int. J. Heat Mass Transfer
,
44
, pp.
2029
2042
.
27.
Moraal, P. and Kolmanovsky, I., Turbocharger Modeling for Automotive Control Applications, SAE Paper 1999-01-0908.
28.
Cunningham, J. M., Hoffman, M. A., Moore, R. M., and Friedman, D. J., Requirements for a Flexible and Realistic Air Supply Model for Incorporation into a Fuel Cell Vehicle (FCV) System Simulation, SAE Paper 1999-01-2912.
29.
Adams, J. A., Yang, W-C., Oglesby, K. A., and Osborne, K. D., The development of Ford’s P2000 fuel cell vehicle, SAE Paper 2000-01-1061.
30.
Gravdahl, J. T. and Egeland, O., 1999, Compressor Surge and Rotating Stall, Springer, London.
31.
Kailath, T., 1980, Linear Systems, Prentice-Hall, New Jersey.
32.
Thomas, P., 1999, Simulation of Industrial Processes for Control Engineer, London, Butterworth Heinemann.
You do not currently have access to this content.