This paper is concerned with the nonfragile controller design problem for linear time-invariant systems. The controller to be designed is assumed to have norm-bounded uncertainties. Design methods are presented for dynamic output (measurement) feedback. The designed controllers with uncertainty (i.e. nonfragile controllers) are such that the closed-loop system is quadratically stable and has an disturbance attenuation bound. Furthermore, these robust controllers degenerate to the standard output feedback control designs, when the controller uncertainties are set to zero.
1.
Doyle
, J.C.
, Glover
, K.
, Khargonekar
, P.P.
, and Francis
, B.A.
, 1989
, “State Space Solutions to Standard L11 and H∞ Control Problems
,” IEEE Trans. Autom. Control
, 34
(8
), pp. 831
–847
.2.
Khargonekar
, P.P.
, Petersen
, I.R.
, and Zhou
, K.
, 1990
, “Robust Stabilizability and H∞ Control Theory
,” IEEE Trans. Autom. Control
, 35
(3
), pp. 356
–361
.3.
Knobloch, H.W., Isidori, A., and Flockerzi, D., 1993, Topics in Control Theory, Birkhauser Verlag, Basel, Switzerland.
4.
Petersen
, I.R.
, Anderson
, B.D.O.
, and Jonckheere
, E.A.
, 1991
, “A First Principles Solution to the Nonsingular H∞ Control Problem
,” Int. J. Robust Nonlinear Control
, 1
, pp. 153
–170
.5.
Scherer, C., 1990, “The Riccati Inequality and State-Space H∞ Optimal Control,” Ph.D. thesis, Univ. of Wurzburg, Germany.
6.
Tadmor
, G.
, 1990
, “Worst Case Design in the Domain
,” Math. Control, Signals and Systems
, 3
, pp. 301
–324
.7.
Xie
, L.
, Fu
, M.
, and de Souza
, C.E.
, 1992
, “Robust H∞ Control for Linear Systems With Norm-Bounded Time-Varying Uncertainty
,” IEEE Trans. Autom. Control
, 37
(8
), pp. 1253
–1256
.8.
Zhou, K., Doyle, J.C., and Glover, K., 1996, Robust Optimal Control, Prentice Hall, Englewood Cliffs, NJ, USA.
9.
Keel
, L.H.
, and Bhattacharyya
, S.P.
, 1997
, “Robust, Fragile, or Optimal?
” IEEE Trans. Autom. Control
, 42
(8
), pp. 1098
–1105
.10.
Dorato, P., 1998, “Non-Fragile Controller Design: An Overview,” Proc. of American Control Conf., Philadelphia, PA, pp. 2829–2831.
11.
Famularo, D., Abdallah, C.T., Jadbabaie, A., Dorato, P., and Haddad, W.M., 1998, “Robust Non-Fragile LQ Controllers: The Static State Feedback Case,” Proc. of American Control Conf., Philadelphia, PA, pp. 1109–1113.
12.
Haddad, W.M., and Corrado, J.R., 1997, “Non-Fragile Controller Design via Quadratic Lyapunov Bounds,” Proc. of IEEE Conf. on Decision and Control, San Diego, CA, pp. 2678–2683.
13.
Haddad, W.M., and Corrado, J.R., 1998, “Robust Non-Fragile Dynamic Controllers for Systems with Parametric Uncertainty and Controller Gain Variations,” Proc. of American Control Conf., Philadelphia, PA, pp. 2837–2841.
14.
Jadbabaie, A., Abdallah, C.T., Famularo, D., and Dorato, P., 1998, “Robust, Non-Fragile and Optimal Controller Design via Linear Matrix Inequalities,” Proc. of American Control Conf., Philadelphia, PA, pp. 2842–2846.
15.
Yang, G.-H., Wang, J.L., and Lin, C., 1999, “H∞ Control for Linear Systems With Controller Uncertainty,” Proc. of 1999 American Control Conf., San Diego, CA, pp. 3377–3381.
16.
Yang
, G.-H.
, and Wang
, J.L.
, 2001
, “Non-Fragile H∞ Control for Linear Systems With Multiplicative Controller Gain Variations
,” Automatica
, 37
(5
), pp. 727
–737
.17.
Yang
, G.-H.
, and Wang
, J.L.
, 2001
, “Robust Non-Fragile Kalman Filtering for Uncertain Linear Systems With Estimator Gain Uncertainty
,” IEEE Trans. Autom. Control
, 46
(2
), pp. 343
–348
.18.
Yang
, G.-H.
, Wang
, J.L.
, and Lin
, C.
, 2000
, “H∞ Control for Linear Systems With Additive Controller Gain Variations
,” Int. J. Control
, 73
(16
), pp. 1500
–1506
.19.
Gevers, M., and Li, G., 1993, Parameterizations on Control, Estimations and Filtering Problem: Accuracy Aspects, Springer-Verlag, Berlin, Germany.
20.
Petersen
, I.R.
, 1987
, “A Stabilization Algorithm for a Class of Uncertain Linear Systems
,” Syst. Control Lett.
, 8
, pp. 351
–357
.21.
Barmish
, B.R.
, 1985
, “Necessary and Sufficient Conditions for Quadratic Stabilizability of an Uncertain System
,” J. Optim. Theory Appl.
, 46
(4
), pp. 399
–408
.Copyright © 2003
by ASME
You do not currently have access to this content.