A nonlinear harmonic disturbance observer for nonlinear systems subject to harmonics is designed and stability of the proposed observer is established using passivity approach. A systematic procedure to choose the nonlinear gain function in the observer is proposed. The proposed nonlinear disturbance observer can be integrated with a linear/nonlinear controller to improve its disturbance attenuation ability for nonlinear systems under harmonics.
Issue Section:
Technical Briefs
1.
Bayard
, D. S.
, 2000
, “A General Theory of Linear Time-Invariant Adaptive Feed-Forward Systems With Harmonic Regressors
,” IEEE Trans. Autom. Control
, 45
(11
), pp. 1983
–1996
.2.
Leitmann, G., and Pandey, S., 1990, Aircraft Control Under Conditions of Windshear, Proc. of IEEE 29th Conf. on Control and Decision, Honolulu, HI, pp. 747–752.
3.
Zhao, Y., and Bryson, A. E., 1990, “Aircraft Control in a Downburst on Takeoff and Landing,” Proc. of IEEE 29th Conf. on Control and Decision, Honolulu, HI, pp. 753–757.
4.
Ko¨llasro¨m, C. G., and Ottosson, P., 1982, “The Generation and Control of Roll Motion of Ships in Closed Turns,” Proc. of 4th Int. Symp. on Ship Operation Automation, Geneva, Switzerland, pp. 1–12.
5.
Tsao, T. C., and Tomizuka, M., 1988, “Adaptive and Repetitive Digital Control Algorithms for Non-Circular Machining,” Proc. of American Control Conference, Atlanta, GA, pp. 115–120.
6.
Chew
, K. K.
, and Tomizuka
, M.
, 1990
, “Digital Control of Repetitive Errors in Disk Drive Systems
,” IEEE Control Syst. Mag.
, 10
(1
), pp. 16
–20
.7.
Chen
, X.
, Komada
, S.
, and Fukuda
, T.
, 2000
, “Design of a Nonlinear Disturbance Observer
,” IEEE Trans. Ind. Electron.
, 37
(2
), pp. 429
–436
.8.
Liu
, C.-S.
, and Peng
, H.
, 2000
, “Disturbance Observer Based Tracking Control
,” ASME J. Dyn. Syst., Meas., Control
, 122
(2
), pp. 332
–335
.9.
Chen
, W.-H.
, Ballance
, D. J.
, Gawthrop
, P. J.
, Gribble
, J. J.
, and O’Reilly
, J.
, 1999
, “Nonlinear PID Predictive Controller
,” IEE Proc.-D: Control Theory Appl.
, 146
(6
), pp. 603
–611
.10.
Chen
, W.-H.
, Ballance
, D. J.
, Gawthrop
, P. J.
, and O’Reilly
, J.
, 2000
, “A Nonlinear Disturbance Observer for Two-Link Robotic Manipulators
,” IEEE Trans. Ind. Electron.
, 47
(4
), pp. 932
–938
.11.
Slotine
, J.-J. E.
, Hedrick
, J. K.
, and Misawa
, E. A.
, 1987
, “On Sliding Observer for Nonlinear Systems
,” ASME J. Dyn. Syst., Meas., Control
, 109
, pp. 245
–252
.12.
Isidori
, A.
, and Byrnes
, C. J.
, 1990
, “Output Regulation of Nonlinear Systems
,” IEEE Trans. Autom. Control
, 35
, pp. 131
–140
.13.
Francis
, B. A.
, and Wonham
, W. M.
, 1976
, “The Internal Model Principal of Control Theory
,” Automatica
, 12
, pp. 457
–465
.14.
Lindquist
, A.
, and Yakubovich
, V. A.
, 1999
, “Universal Regulators for Optimal Tracking in Discrete-Time Systems Affected by Harmonic Disturbances
,” IEEE Trans. Autom. Control
, 44
, pp. 1688
–1704
.15.
Isidori, A., 1995, Nonlinear Control Systems: An Introduction. 3rd Edition, Springer-Verlag, New York.
16.
Desoer, C. A., and Vidyasagar, M., 1975, Feedback Systems: Input-Output Properties, Academic Press, London.
17.
Zames
, G.
, and Falb
, P. L.
, 1968
, “Stability Conditions for Systems With Monotone and Slope-Restricted Nonlinearities
,” SIAM Journal
, 6
(1
), pp. 89
–108
.Copyright © 2003
by ASME
You do not currently have access to this content.