A nonlinear harmonic disturbance observer for nonlinear systems subject to harmonics is designed and stability of the proposed observer is established using passivity approach. A systematic procedure to choose the nonlinear gain function in the observer is proposed. The proposed nonlinear disturbance observer can be integrated with a linear/nonlinear controller to improve its disturbance attenuation ability for nonlinear systems under harmonics.

1.
Bayard
,
D. S.
,
2000
, “
A General Theory of Linear Time-Invariant Adaptive Feed-Forward Systems With Harmonic Regressors
,”
IEEE Trans. Autom. Control
,
45
(
11
), pp.
1983
1996
.
2.
Leitmann, G., and Pandey, S., 1990, Aircraft Control Under Conditions of Windshear, Proc. of IEEE 29th Conf. on Control and Decision, Honolulu, HI, pp. 747–752.
3.
Zhao, Y., and Bryson, A. E., 1990, “Aircraft Control in a Downburst on Takeoff and Landing,” Proc. of IEEE 29th Conf. on Control and Decision, Honolulu, HI, pp. 753–757.
4.
Ko¨llasro¨m, C. G., and Ottosson, P., 1982, “The Generation and Control of Roll Motion of Ships in Closed Turns,” Proc. of 4th Int. Symp. on Ship Operation Automation, Geneva, Switzerland, pp. 1–12.
5.
Tsao, T. C., and Tomizuka, M., 1988, “Adaptive and Repetitive Digital Control Algorithms for Non-Circular Machining,” Proc. of American Control Conference, Atlanta, GA, pp. 115–120.
6.
Chew
,
K. K.
, and
Tomizuka
,
M.
,
1990
, “
Digital Control of Repetitive Errors in Disk Drive Systems
,”
IEEE Control Syst. Mag.
,
10
(
1
), pp.
16
20
.
7.
Chen
,
X.
,
Komada
,
S.
, and
Fukuda
,
T.
,
2000
, “
Design of a Nonlinear Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
37
(
2
), pp.
429
436
.
8.
Liu
,
C.-S.
, and
Peng
,
H.
,
2000
, “
Disturbance Observer Based Tracking Control
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
332
335
.
9.
Chen
,
W.-H.
,
Ballance
,
D. J.
,
Gawthrop
,
P. J.
,
Gribble
,
J. J.
, and
O’Reilly
,
J.
,
1999
, “
Nonlinear PID Predictive Controller
,”
IEE Proc.-D: Control Theory Appl.
,
146
(
6
), pp.
603
611
.
10.
Chen
,
W.-H.
,
Ballance
,
D. J.
,
Gawthrop
,
P. J.
, and
O’Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Two-Link Robotic Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
4
), pp.
932
938
.
11.
Slotine
,
J.-J. E.
,
Hedrick
,
J. K.
, and
Misawa
,
E. A.
,
1987
, “
On Sliding Observer for Nonlinear Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
245
252
.
12.
Isidori
,
A.
, and
Byrnes
,
C. J.
,
1990
, “
Output Regulation of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
35
, pp.
131
140
.
13.
Francis
,
B. A.
, and
Wonham
,
W. M.
,
1976
, “
The Internal Model Principal of Control Theory
,”
Automatica
,
12
, pp.
457
465
.
14.
Lindquist
,
A.
, and
Yakubovich
,
V. A.
,
1999
, “
Universal Regulators for Optimal Tracking in Discrete-Time Systems Affected by Harmonic Disturbances
,”
IEEE Trans. Autom. Control
,
44
, pp.
1688
1704
.
15.
Isidori, A., 1995, Nonlinear Control Systems: An Introduction. 3rd Edition, Springer-Verlag, New York.
16.
Desoer, C. A., and Vidyasagar, M., 1975, Feedback Systems: Input-Output Properties, Academic Press, London.
17.
Zames
,
G.
, and
Falb
,
P. L.
,
1968
, “
Stability Conditions for Systems With Monotone and Slope-Restricted Nonlinearities
,”
SIAM Journal
,
6
(
1
), pp.
89
108
.
You do not currently have access to this content.