This paper describes a systematic procedure to design H position and flux-norm tracking controllers for current-fed induction motors. The designed controllers achieve convergence to zero of both position and flux-norm tracking errors while ensuring robustness with respect to unknown load torque disturbances. The proposed procedure offers the possibility of a simple development of the controllers’ design; in particular, it does not require a numerical solution of the Riccati matrix equation. A case study has been set up which considers the application of the proposed control scheme to a two-link robot manipulator system actuated by two induction motors. Numerical simulation results confirm the validity of the proposed design methodology, even in the presence of rotor resistance uncertainty.

1.
de Wit
,
C. Canudas
, and
Seleme
,
S. I.
,
1997
, “
Robust Torque Regulation for Induction Motors: The Minimum Energy Approach
,”
Automatica
,
33
, pp.
63
79
.
2.
Chiaverini, S., Figalli, G., and Fusco, G., 1999, “H∞ Design of a Robust Speed Controller for Induction Motors,” Proc. IEEE Conference on Control Applications, pp. 956–961, Hawaii, HI.
3.
Georges
,
D.
,
de Wit
,
C. Canudas
, and
Ramirez
,
J.
,
1999
, “
Nonlinear H2 and H∞ Optimal Controllers for Current Fed Induction Motors
,”
IEEE Trans. Autom. Control
,
44
, pp.
1430
1435
.
4.
Vedagarbha, P., Dawson, D. M., and Burg, T., 1966, “Velocity Tracking/Setpoint Control of Induction Motors with Improved Efficiency,” Prep. 13th IFAC World Congress, San Francisco, CA, Vol. F, pp. 37–42.
5.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
, pp.
831
846
.
6.
Wang
,
W. J.
, and
Wang
,
C. C.
,
1998
, “
Composite Adaptive Position Controller for Induction Motor Using Feedback Linearisation,
IEE Proc. Control Theory Applications
,
145
, pp.
25
32
.
7.
Benchaib
,
A.
,
Rachid
,
A.
,
Audretez
,
E.
, and
Tadjine
,
M.
,
1999
, “
Real Time Sliding-Mode Observer and Control of an Induction Motor
,”
IEEE Trans. Ind. Electron.
,
46
, pp.
128
138
.
8.
Isidori, A., 1995, Nonlinear Control Systems, Springer-Verlag, Berlin.
9.
Slotine, J., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ.
10.
Safonov
,
M. G.
, and
Athans
,
M.
,
1978
, “
Robustness and Computational Aspects of Nonlinear Stochastic Estimators and Regulators
,”
IEEE Trans. Autom. Control
,
23
, pp.
717
725
.
11.
Fromion, V., Scorletti, G., and Barbot, J. P., 1999, “Quadratic Observers for Estimation and Control in Induction Motors,” Proc. IEEE American Control Conference, San Diego, CA, pp. 2143–2147.
12.
Integrated Motion Inc., Direct Drive Manipulator Research & Development Package Operations Manual, Berkeley, CA, 1992.
13.
Balestrino
,
A.
,
De Maria
,
G.
,
Sciavicco
,
L.
, and
Sieiliano
,
B.
,
1988
, “
An Algorithmic Approach to Coordinate Transformation for Robotic Manipulators
,”
Advanced Robotics
,
2
, pp.
327
344
.
14.
Sciavicco, L., and Siciliano, B., 2000, Modeling and Control of Robot Manipulators, Springer-Verlag, Berlin.
15.
Bellini, A., Chiaverini, S., Figalli, G., and Fusco, G., 2000, “Implementation Issues of a H∞ Speed Controller for Induction Motors: A Case Study,” Prep. IFAC Conference Control Systems Design, Bratislava, Slovak Republic, pp. 448–453.
You do not currently have access to this content.