An output-feedback observer is proposed in this paper to simultaneously estimate unknown states and disturbances of linear time invariant systems. The states are estimated using a Luenberger-like observer while the disturbance signals are estimated based on an inverse-dynamics motivated algorithm. The proposed schemes can be applied to a wide variety of disturbances since no disturbance model is required in the estimation. Depending on the input/output rank conditions of the plant, two different designs are proposed. The observer gains are selected based on sufficient conditions for exponentially converging estimation. The design procedure is illustrated step-by-step by using two examples: a hypothetical problem and the ground vehicle lateral speed estimation problem. A standard H-filter is used as the benchmark to illustrate the performance of the proposed method.

1.
Darouach
,
M.
,
1994
, “
On the Novel Approach to the Design of Unknown Input Observers
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
698
699
.
2.
Darouach
,
M.
,
Zasadzinski
,
M.
, and
Xu
,
S. J.
,
1994
, “
Full-Order Observers for Linear Systems with Unknown Inputs
,”
IEEE Trans. Autom. Control
,
39
(
3
), pp.
606
609
.
3.
Hou
,
M.
, and
Muller
,
P. C.
,
1992
, “
Design of Observers for Linear Systems with Unknown Inputs
,”
IEEE Trans. Autom. Control
,
37
(
6
), pp.
871
875
.
4.
Hou
,
M.
, and
Muller
,
P. C.
,
1994
, “
Disturbance Decoupled Observer Design: A Unified Viewpoint
,”
IEEE Trans. Autom. Control
,
39
(
6
), pp.
1338
1341
.
5.
Syrmos
,
V. L.
,
1994
, “
Disturbance Decoupling Using Constrained Sylvester Equations
,”
IEEE Trans. Autom. Control
,
39
(
4
), pp.
797
803
.
6.
Kobayashi
,
N.
, and
Nakamizo
,
T.
,
1982
, “
An Observer Design for Linear Systems with Unknown Inputs
,”
Int. J. Control
,
35
(
4
), pp.
605
619
.
7.
Miller
,
R. J.
, and
Mukundan
,
R.
,
1982
, “
On Designing Reduced-Order Observers for Linear Time-Invariant Systems Subject to Unknown Inputs
,”
Int. J. Control
,
35
(
1
), pp.
183
188
.
8.
Guan
,
Y.
, and
Saif
,
M.
,
1991
, “
A Novel Approach to the Design of Unknown Input Observers
,”
IEEE Trans. Autom. Control
,
36
(
5
), pp.
632
635
.
9.
Ahlen
,
A.
, and
Sternad
,
M.
,
1989
, “
Optimal Deconvolution Based on Polynomial Methods
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
37
(
2
), pp.
217
226
.
10.
Messner
,
W.
, and
Horwitz
,
R.
,
1993
, “
Identification of a Nonlinear Function in a Dynamical System
,”
ASME J. Dyn. Syst., Meas., Control
,
115
(
4
), pp.
587
591
.
11.
Francis
,
B. A.
, and
Wonham
,
W. M.
,
1975
, “
The Internal Model Principle for Linear Multivariable Regulator
,”
Appl. Math. and Opt.
,
2
, pp.
170
194
.
12.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
,
1988
, “
Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
,
33
(
7
), July, pp.
659
668
.
13.
Chew
,
K. K.
, and
Tomizuka
,
M.
,
1990
, “
Steady-State and Stochastic Performance of a Modified Discrete-Time Prototype Repetitive Control
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
35
41
.
14.
Yang
,
W. C.
, and
Tomizuka
,
M.
,
1994
, “
Disturbance Rejection Through an External Model for Non-minimum Phase Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
39
44
.
15.
Ichikawa
,
K.
,
1994
, “
Exact Model Matching with Disturbance Suppression
,”
Int. J. Control
,
60
(
3
), pp.
425
434
.
16.
Yaz
,
E.
, and
Azemi
,
A.
,
1993
, “
Variable Structure Observer with a Boundary-Layer for Correlated Noise/Disturbance Models and Disturbance Minimization
,”
Int. J. Control
,
57
(
5
), pp.
1191
1206
.
17.
Levine
,
J.
, and
Marino
,
R.
,
1986
, “
Nonlinear System Immersion, Observers and Finite-Dimensional Filters
,”
Syst. Control Lett.
,
7
, pp.
133
142
.
18.
Stein
,
J. L.
, and
Park
,
Y.
,
1988
, “
Measurement Signal Selection and a Simultaneous State and Input Observer
,”
ASME J. Dyn. Syst., Meas., Control
,
110
(
2
), June, pp.
151
159
.
19.
Park
,
Y.
, and
Stein
,
J. L.
,
1988
, “
Closed-loop, State and Input Observer for Systems with Unknown Inputs
,”
Int. J. Control
,
48
(
3
), pp.
1121
1136
.
20.
Tu
,
J. F.
, and
Stein
,
J. L.
,
1998
, “
Modeling Error Compensation for Observer Design
,”
Int. J. Control
,
69
(
2
), pp.
329
345
.
21.
Corless
,
M.
, and
Tu
,
J. F.
,
1998
, “
State and Input Estimation for a Class of Uncertain Systems
,”
Automatica
,
34
(
6
), pp.
757
764
.
22.
Chen, C. T., 1984, Linear System Theory and Design, Holt, Rinehart and Winston, New York.
23.
Vidyasagar, 1978, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ.
24.
Zhou, K., Doyle, J. C., and Glover, K., 1996, Robust and Optimal Control, Prentice-Hall, NJ.
25.
Mangoubi, R., 1998, Robust Estimation and Failure Detection: A Concise Treatment, Springer, New York.
26.
Nagpal
,
K. M.
, and
Khargonekar
,
P. P.
,
1991
, “
Filtering and Smoothing in an H∞ Setting
,”
IEEE Trans. Autom. Control
,
36
(
2
), pp.
152
166
.
27.
Shaked, U., and Theodor Y., 1992, “H∞-Optimal Estimation: A Tutorial,” Proc. of the 31st Conference on Decision and Control, pp. 2278–2286.
28.
Zanten, A., Erhardt, R., and Pfaff, G., 1995, “VDC, the Vehicle Dynamics Control System of Bosch,” paper#950759, also in ABS-TCS-VDC—Where Will The Technology Lead Us?, SAE PT-57, Warrendale, PA.
29.
LeBlanc
,
D. J.
,
Ervin
,
D. J.
,
Johnson
,
G. E.
,
Venhovens
,
P. J. Th.
,
Gerber
,
G.
,
DeSonia
,
R.
,
Lin
,
C.-F.
,
Pilutti
,
T.
, and
Ulsoy
,
A. G.
,
1996
, “
CAPC: An Implementation of a Road-departure Warning System
,”
IEEE Control Syst. Mag.
,
16
(
6
), Dec., pp.
61
71
.
30.
Fenton
,
R. E.
,
Melocik
,
G. C.
, and
Olson
,
K. W.
,
1976
, “
On the Steering of Automated Vehicles: Theory and Experiment
,”
IEEE Trans. Autom. Control
,
AC-21
(
3
), pp.
306
315
.
You do not currently have access to this content.