A solution is presented in this note to the problem of improving the transient response of a MIMO nonlinear system driven by a VSC law, in the presence of large plant uncertainties. The proposed control scheme is given in terms of a supervisor and of a deterministic time-varying compensator, built using sliding-mode control and assuming a finite number of possible different configurations. The task of the supervisor is that of guiding the scanning among the elements of the family, according to a suitably defined experimental test. The proposed approach noticeably improves the performances of sliding-mode control in the presence of large plant uncertainties, and has the substantial advantage of a great simplicity of design and implementation. Moreover, even in case of a large number of configurations constituting the stabilizing family, it has been shown to be able to attain the stabilizing controller in an arbitrarily small time interval. Another appealing feature of the paper consists in the inclusion of an intelligent adaptation scheme in the control algorithm.

1.
Marino, R., and Tomei, P., 1995, Nonlinear control design, Prentice Hall, U.K.
2.
Kanellakopoulos
,
I.
,
Kokotovic
,
P. V.
, and
Morse
,
A. S.
,
1991
, “
Systematic design of adaptive controllers for feedback linearizable systems
,”
IEEE Trans. Autom. Control
,
36
, pp.
1241
1252
.
3.
Krstic M., and Kokotovic P. V., 1993, “Adaptive nonlinear control with nonlinear swapping,” Proc. IEEE Conf. on Decision and Control, pp. 1073–1080.
4.
Seto
,
D.
,
Annaswamy
,
A. M.
, and
Baillieul
,
J.
,
1994
, “
Adaptive control of nonlinear systems with a triangular structure
,”
IEEE Trans. Autom. Control
,
39
, pp.
1411
1428
.
5.
Freeman, R. A., and Kokotovic P. V., 1996, Robust nonlinear control design Birkhauser, Berlin.
6.
Utkin V. I., 1992, Sliding modes in control optimization, Springer-Verlag Berlin.
7.
Gao
,
W.
,
Wang
,
Y.
, and
Homaifa
,
A.
,
1995
, “
Discrete-time variable structure control systems
,”
IEEE Trans. Ind. Electron.
,
42
, pp.
117
122
.
8.
Davison, E. J., 1990, “Benchmark problems for control system design,” Report, IFAC Theory Committee.
9.
Sun
,
F. C.
,
Sun
,
Z. Q.
, and
Feng
,
G.
,
1999
, “
An adaptive fuzzy controller based on sliding mode for robot manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
B29
, pp.
661
667
.
10.
Yu W., Poznyak A. S., and Sanchez E. N., 1999, “Neural adaptive control of two-link manipulator with sliding mode compensation,” Proc. 1999 IEEE International Conf. on Robotics and Automation, Vol. 4, pp. 3122–3127.
11.
Li S., and Xi Y., 2000, “Adaptive fuzzy sliding mode control for a class of uncertain dynamic systems,” Proc. 3rd World Congress on Intelligent Control and Automation, Vol. 3, pp. 1849–1853.
12.
Narendra
,
K. S.
, and
Boskovic
,
J. D.
,
1989
, “
A combined direct, indirect and variable structure method for robust adaptive control
,”
IEEE Trans. Autom. Control
,
AC-37
, pp.
262
268
.
13.
SiraRamirez
,
H.
,
Zribi
,
M.
, and
Ahmad
,
S.
,
1993
, “
Adaptive dynamical feedback regulation strategies for linearizable uncertain systems
,”
Int. J. Control
,
57
, pp.
121
139
.
14.
Zinober A. S. I., and Rios-Bolivar M., 1994, “Sliding mode control for uncertain linearizable nonlinear systems: a backstepping approach,” Proc. IEEE Workshop of Robust Control via Variable Structure and Lyapunov Techniques, pp. 78–85.
15.
Bartolini
,
G.
,
Ferrara
,
A.
,
Giacomini
,
L.
, and
Usai
,
E.
,
2000
, “
Properties of a combined adaptive/second-order sliding control algorithm for some classes of uncertain nonlinear systems
,”
IEEE Trans. Autom. Control
,
45
(
7
), pp.
1334
1341
.
16.
Chiang, C. C., and Tzeng Y. S., 1999, “Dynamic sliding mode adaptive controller for nonlinear systems with higher order and unmatched uncertainties,” Proc. IEEE Conf. on Systems, Man, and Cybernetics, Vol. 1, pp. 44–49.
17.
Sankaranarayanan S., Melkote H., and Khorrami F., 1999, “Adaptive variable structure control of a class of nonlinear systems with nonvanishing perturbations via backstepping,” Proc. American Control Conference (ACC99), pp. 4491–4990.
18.
Middleton
,
R. H.
,
Goodwin
,
G. C.
,
Hill
,
D. J.
, and
Mayne
,
D. Q.
,
1988
, “
Design issues in adaptive control
,”
IEEE Trans. Autom. Control
,
AC-23
, pp.
50
58
.
19.
Morse
,
A.
,
1996
, “
Supervisory control of families of linear set-point controllers-part i: Exact matching
,”
IEEE Trans. Autom. Control
,
AC-41
, No.
10
, pp.
1413
1431
.
20.
Morse
,
A. S.
,
Mayne
,
D. Q.
, and
Goodwin
,
G. C.
,
1992
, “
Application of hysteresis switching in parameter adaptive control
,”
IEEE Trans. Autom. Control
,
AC-37
, pp.
1343
1354
.
21.
Narendra
,
K. S.
, and
Balakrishnan
,
J.
,
1994
, “
Improving transient response of adaptive control systems using multiple models and switching
,”
IEEE Trans. Autom. Control
,
AC-39
, No.
9
, pp.
1861
1866
.
22.
Narendra
,
K. S.
,
Balakrishnan
,
J.
, and
Ciliz
,
M. K.
,
1995
, “
Adaptation and learning using adaptive models, switching and tuning
,”
IEEE Control Syst. Mag.
,
37
51
.
23.
Narendra
,
K. S.
, and
Balakrishnan
,
J.
,
1997
, “
Adaptive control using multiple models
,”
IEEE Trans. Autom. Control
,
AC-42
, pp.
171
187
.
24.
Pait
,
F.
, and
Morse
,
S.
,
1994
, “
A cyclic switching strategy for parameter adaptive control
,”
IEEE Trans. Autom. Control
,
AC-39
, pp.
1172
1183
.
25.
Weller
,
S. R.
, and
Goodwin
,
G. C.
,
1994
, “
Hysteresis switching adaptive control of linear multivariable systems
,”
IEEE Trans. Autom. Control
,
AC-39
, pp.
1360
1373
.
26.
Corradini, M. L., and Jetto L., 1999, “Robust stabilization of interval plants via an intelligent time-varying control scheme,” Proc. of the 14th IFAC World Congress, Bejing, Vol. G, pp. 157–162.
27.
Fu
,
M.
, and
Barmish
,
B. R.
,
1986
, “
Adaptive stabilization of linear systems via switching control
,”
IEEE Trans. Autom. Control
,
AC-31
, No.
12
, pp.
1097
1103
.
28.
Corradini, M. L., Leo T., and Orlando G., 2000, “Robust stabilization of a class of nonlinear systems via multiple model sliding-mode control,” Proc. American Control Conference (ACC2000).
29.
Corradini, M. L., Leo T., and Orlando G., 2000, “Multimodel switching control of a class of nonlinear systems using sliding-modes,” Proc. 3rd IFAC Symp. of Robust Control Design (ROCOND2000).
You do not currently have access to this content.