The “analysis” or “inverse dynamics” problem in human motion studies assumes knowledge of the motion of the dynamical system in various forms and/or measurements of ground reaction forces to determine the applied forces and moments at the joints. Conceptually, methods of attacking such problems are well developed and satisfactory solutions have been obtained if the input signals are noise free and the dynamic model is perfect. In this ideal case, an inverse solution exists, is unique, and depends continuously on the initial data. However, the inverse solution may require the calculation of higher order derivatives of experimental observations contaminated by noise—a notoriously difficult problem. The byproduct of errors due to numerical differentiation is grossly erroneous joint force and moment calculations. This paper provides a framework for analyzing human motion for different sensing conditions in a manner that avoids or minimizes the number of derivative computations. In particular, two sensing modalities are considered: 1) image based and 2) multi-modal sensing: combining imaging, force plate, and accelerometery.

1.
Kuo
,
A. D.
,
1998
, “
A least squares estimation approach to improving the precision of inverse dynamics computations.
ASME J. Biomech. Eng.
,
120
, No.
1
, pp.
148
159
.
2.
Runge
,
C. F.
,
Zajac
,
F. E.
,
Allum
,
J.
,
Risher
,
D. W.
,
Bryson
,
A. E.
, and
Honegger
,
F.
,
1995
, “
Estimating net joint torques from kinesiological data using optimal linear system theory
,”
IEEE Trans. Biomed. Eng.
,
42
, No.
12
, pp.
1158
1164
.
3.
Chao
,
E. Y.
, and
Rim
,
K.
,
1973
, “
Application of optimization principles in determining the applied moments in human leg joints during gait
,”
J. Biomech.
,
6
, pp.
497
510
.
4.
Van den Bogert
,
A. J.
,
Schamhardt
,
H. C.
, and
Crowe
,
A.
,
1989
, “
Simulation of quadrupedal locomotion using a rigid body model
,”
J. Biomech.
,
22
, No.
1
, pp.
33
41
.
5.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
1996
, “
Influence of muscles on knee flexion during the swing phase of gait
,”
J. Biomech.
,
29
, No.
6
, pp.
723
733
.
6.
Gerristen
,
K. G. M.
,
Nachbauer
,
W.
, and
van den Bogert
,
A. J.
,
1996
, “
Computer simulation of landing movement in downhill skiing: Anterior cruciate ligament injuries
,”
J. Biomech.
,
29
, No.
7
, pp.
845
854
.
7.
Hodgins, J. K., Wooten, W. L, Brogan, D. C., and O’Brien, J. F., 1995, “Animating human athletics,” SIGGRAPH 95, pp. 71–78.
8.
Hodgins, J. K., Sweeney, P. K., and Lawrence, D. G., 1992, “Generating natural looking motion for computer animation.” In Graphics Interface ’92, pp. 265–272.
9.
Bruderlin, A., and Calvert, T. W., 1989, “Goal-directed, dynamic animation of human walking,” SIGGRAPH 89, pp. 233–242.
10.
Raibert
,
M.
, and
Hodgins
,
J. K.
,
1991
, “
Animation of dynamic legged locomotion
,”
Comput. Graph.
,
25
, No.
4
, pp.
349
358
.
11.
McKenna
,
M.
, and
Zeltzer
,
D.
,
1990
, “
Dynamic simulation of autonomous legged locomotion
,”
Comput. Graph.
,
24
, No.
4
, pp.
29
38
.
12.
Cullum
,
J.
,
1971
, “
Numerical differentiation and regularization
,”
SIAM J. Numer. Anal.
,
8
, No.
2
, pp.
254
265
.
13.
Anderson
,
R.
, and
Bloomfield
,
P.
,
1974
, “
Numerical differentiation procedures for non-exact data
,”
Numererische Mathematik
,
22
, pp.
157
182
.
14.
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1985
, “
Numerical experiments with a new differentiation filter
,”
ASME J. Biomech. Eng.
,
107
, pp.
293
299
.
15.
Dohrmann
,
C. R.
,
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1988
, “
Smoothing noisy data using dynamic programming and generalized cross-validation.
ASME J. Biomech. Eng.
,
110
, pp.
37
41
.
16.
Hatze
,
H.
,
1981
, “
The use of optimally regularized Fourier series for estimating higher-order derivatives of noisy biomechanical data
,”
J. Biomech.
,
14
, pp.
13
18
.
17.
Simons
,
W.
, and
Yang
,
K. H.
,
1991
, “
Differentiation of human motion data using combined spline and least squares concepts
,”
ASME J. Biomech. Eng.
,
113
, pp.
348
351
.
18.
Woltring
,
H. J.
,
1986
, “
A fortran package for generalized, cross-validatory spline smoothing and differentiation
,”
Adv. Eng. Software
,
8
, No.
2
, pp.
104
113
.
19.
Woltring
,
H. J.
,
1985
, “
On optimal smoothing and derivative estimation from noisy displacement data in biomechanics
,”
Human Movement Science
,
4
, pp.
229
245
.
20.
Giakas
,
G.
, and
Baltzopoulos
,
V.
,
1997
, “
Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives
,”
J. Biomech.
,
30
, No.
8
, pp.
851
855
.
21.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A parameter optimization approach for the optimal control of large-scale musculoskeletal systems
,”
ASME J. Biomech. Eng.
,
114
, pp.
450
460
.
22.
Pandy
,
M. G.
,
Garner
,
B. A.
, and
Anderson
,
F. C.
,
1995
, “
Optimal control of non-ballistic muscular movements: A constraint-based performance criterion for rising from a chair
,”
ASME J. Biomech. Eng.
,
117
, pp.
15
26
.
23.
Levine
,
W. S.
,
Zajac
,
F. E.
,
Belzer
,
M. R.
, and
Zomlefer
,
M. R.
,
1983
, “
Ankle controls that produce a maximal vertical jump when other joints are locked
,”
IEEE Trans. Autom. Control
,
28
, No.
11
, pp.
1008
1016
.
24.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback gains for correcting small perturbations to standing posture
,”
IEEE Trans. Autom. Control
,
36
, No.
3
, pp.
322
332
.
25.
Winter, D. A., 1990, Biomechanics and Motor Control of Human Movement, Wiley-Interscience, New York.
26.
Hemami
,
H.
, and
Wyman
,
B.
,
1979
, “
Modeling and control of constrained dynamic systems with application to biped locomotion in the frontal plane
,”
IEEE Trans. Autom. Control
,
24
, Aug., pp.
526
535
.
27.
Lewis, F. L., and Syrmos, V. L., 1995, Optimal Control, J Wiley, 2nd edition, NY.
28.
Athans, M., and Falb, P. L., 1966, Optimal Control, McGraw-Hill, New York, 2nd edition.
29.
Bryson, A. E., and Ho, Y. C., 1975, Applied Optimal Control, Hemisphere, New York.
30.
Soroka
,
E.
, and
Shaked
,
U.
,
1984
, “
On the robustness of lq regulators
,”
IEEE Trans. Autom. Control
,
AC-29
, No.
7
, pp.
664
665
.
31.
Zhang
,
C.
, and
Fu
,
M.
,
1996
, “
A revisit to the gain and phase margins of linear quadratic regulators
,”
IEEE Trans. Autom. Control
,
AC-41
, No.
10
, pp.
1527
1530
.
32.
Patel
,
R. V.
,
Toda
,
M.
, and
Sridhar
,
B.
,
1977
, “
Robustness of linear quadratic state feedback designs in the presence of system uncertainty
,”
IEEE Trans. Autom. Control
,
AC-22
, No.
6
, pp.
945
949
.
33.
Dariush, B., 1998, “Predictive and Measurement Oriented Analysis and Synthesis of Human Motion,” PhD thesis, The Ohio State University, Columbus OH.
34.
Gagnon
,
D.
, and
Gagnon
,
M.
,
1992
, “
The influence of dynamic factors on triaxial net muscular moments at the 15/s1 joint during asymmetrical lifting and lowering
,”
J. Biomech.
,
25
, pp.
891
901
.
35.
Khalaf
,
K.
,
Parnianpour
,
M.
,
Sparto
,
P. J.
, and
Barin
,
K.
,
1999
, “
Determination of the effect of lift characteristics on dynamic performance profiles during Manual Material Handling (MMH) tasks
,”
Ergonomics
,
42
, No.
1
, pp.
126
145
.
36.
Hsiang
,
S. H.
, and
McGorry
,
R. W.
,
1997
, “
Three different lifting strategies for controlling the motion patterns of the external load
,”
Ergonomics
,
40
, pp.
928
939
.
37.
Scholz
,
J. P.
,
1993
, “
The effect of load scaling on the coordination of manual squat lifting
,”
Human Movement Science
,
12
, pp.
427
459
.
38.
Dariush, B., Hemami, H., and Parnianpour, M., 1998, “A unique solution to the joint moment estimation problem,” to appear, Third World Conference on Engineering Design and Process Technology, pp. 42–48, Berlin, Germany.
39.
Wu
,
G.
, and
Ladin
,
Z.
,
1993
, “
The kinematometer—an integrated kinematic sensor for kinesiological measurements
,”
ASME J. Biomech. Eng.
,
115
, pp.
53
62
.
You do not currently have access to this content.