The dynamic response of an adaptive fuzzy neural network (FNN) controlled quick-return mechanism, which is driven by a permanent magnet (PM) synchronous servo motor, is described in this study. The crank and disk of the quick-return mechanism are assumed to be rigid. First, Hamilton’s principle and Lagrange multiplier method are applied to formulate the mathematical model of motion. Then, based on the principle of computed torque, an adaptive controller is developed to control the position of a slider of the quick-return servomechanism. Moreover, since the selection of control gain of the adaptive controller has a significant effect on the system performance, an adaptive FNN controller is proposed to control the quick-return servomechanism. In the proposed adaptive FNN controller, an FNN is adopted to facilitate the adjustment of control gain on line. Simulated and experimental results due to periodic step and sinusoidal commands show that the dynamic behavior of the proposed adaptive FNN control system are robust with regard to parametric variations and external disturbances.

1.
Shabana
,
A.
, and
Thomas
,
B.
,
1987
, “
Chatter vibration of flexible multibody machine tool mechanisms
,”
Mech. Mach. Theory.
,
22
, No.
4
, pp.
359
360
.
2.
Ham, C. W., Crane, E. J., and Rogers, W. L. Rogers, 1985, Mechanics of Machinery, McGraw-Hill, New York.
3.
Sandor, G. W., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Prentice-Hall, Englewood Cliff, NJ.
4.
Dwivedi
,
S. N.
,
1984
, “
Application of a whitworth quick return mechanism for high velocity impacting press
,”
Mach. Mach. Theory.
,
19
, pp.
51
59
.
5.
Bahgat
,
B. M.
, and
Willmert
,
K. D.
,
1976
, “
Finite element vibration analysis of planar mechanisms
,”
Mach. Mach. Theory
,
11
, pp.
47
71
.
6.
Song
,
J. O.
, and
Haug
,
E. J.
,
1980
, “
Dynamics analysis of planar flexible mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
24
, pp.
359
369
.
7.
Fung
,
R. F.
, and
Lee
,
F. Y.
,
1997
, “
Dynamic analysis of the flexible rod of a quick-return mechanism with time-dependent coefficients by the finite element method
,”
J. Sound Vib.
,
202
, No.
2
, pp.
187
201
.
8.
Beale
,
D. G.
, and
Scott
,
R. A.
,
1990
, “
The stability and response of a flexible rod in a quick return mechanism
,”
J. Sound. Vib.
,
141
, No.
2
, pp.
277
289
.
9.
Ortega, R., and Spong, M. W., 1988, “Adaptive motion control of rigid robots: a tutorial,” Proc. IEEE Conf. Decision Control, pp. 1575–1584.
10.
Astrom, K. J. and Wittenmark, B., 1995, Adaptive Control, Addison-Wesley, New York.
11.
Slotine, J. J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliff, NJ.
12.
Johansson
,
R.
,
1990
, “
Adaptive control of robot manipulator motion
,”
IEEE Trans. Rob. Autom.
,
6, pp
483
490
.
13.
Su
,
C. Y.
, and
Leung
,
T. P.
,
1993
A sliding mode controller with bound estimation for robot manipulators
,”
IEEE Trans. Rob. Autom.
,
9
, No.
2
, pp.
208
214
.
14.
Imura
,
J.
,
Sugie
,
T.
, and
Yoshikawa
,
T.
,
1994
, “
Adaptive robust control of robot manipulators-theory and experiment
,”
IEEE Trans. Rob. Autom.
,
10
, No.
5
, pp.
705
710
.
15.
Teshnehlab
,
M.
, and
Watanabe
,
K.
,
1994
, “
Self tuning of computed torque gains by using neural networks with flexible structures
,”
IEE Proc. Control Theory Appl.
,
141
, No.
4
, pp.
235
242
.
16.
Lin
,
F. J.
,
Lin
,
Y. S
, and
Chiu
,
S. L.
,
1998
, “
Slider-crank mechanism control using adaptive computed torque technique
,”
IEE Proc. Control theory Appl.
,
145
, No.
3
, pp.
364
376
.
17.
Muskinja
,
N.
,
Tovornik
,
B.
, and
Donlagic
,
D.
,
1997
, “
How to design a discrete supervisory controller for real-time fuzzy control systems
,”
Math. Phys. Electron. J.
,
5
, No.
2
, pp.
161
166
.
18.
Lin
,
F. J.
, and
Chiu
,
S. L.
,
1998
, “
Adaptive fuzzy sliding-mode control for PM synchronous servo motor drives
,”
IEE Proc. Control Theory Appl.
,
145
, No.
1
, pp.
63
72
.
19.
Wang, L. X., 1997, A Course in Fuzzy Systems and Control, Prentice-Hall, Englewood Cliff, NJ.
20.
Noriega
,
J. R.
, and
Wang
,
H.
,
1998
, “
A direct adaptive neural-network control for unknown nonlinear systems and its application
,”
IEEE Trans. Neural Netw.
,
9
, No.
1
, pp.
27
34
.
21.
Zhihong
,
M.
,
Wu
,
H. R.
, and
Palaniswami
,
M.
,
1998
, “
An adaptive tracking controller using neural networks for a class of nonlinear systems
,”
IEEE Trans. Neural Netw.
,
9
, No.
5
, pp.
947
955
.
22.
Omidvar, O. and Elliott, D. L., 1997, Neural Systems for Control, Academic Press.
23.
Wai
,
R. J.
, and
Lin
,
F. J.
,
1998
, “
A fuzzy neural network controller with adaptive learning rates for nonlinear slider-crank mechanism
,”
Neurocomputing
, ,
20
, No.
1–3
, pp.
295
320
.
24.
Lin
,
F. J.
,
Fung
,
R. F.
, and
Wai
,
R. J.
,
1998
, “
Comparison of sliding mode and fuzzy neural network control for motor-toggle servomechanism
,”
IEEE Trans. Mechatronics
,
3
, No.
4
, pp.
302
318
.
25.
Lin, C. T., and George Lee, C. S., 1996, Neural Fuzzy Systems, Prentice-Hall, Englewood Cliff, NJ.
26.
Leu
,
Y. G.
,
Lee
,
T. T.
, and
Wang
,
W. Y.
,
1997
, “
On-line turning of fuzzy-neural network for adaptive control of nonlinear dynamical systems
,”
IEEE Trans. Syst. Man Cybern.
,
27
, No.
6
, pp.
1034
1043
.
27.
Xu, H., Sun, F., and Sun, Z. 1996, “The adaptive sliding mode control based on a fuzzy neural network for manipulators,” IEEE Conf. Syst., Man, Cybern., pp. 1942–1946.
28.
Leonhard, W., 1996, Control of Electrical Drives, Springer, New York.
29.
Novotny, D. W., and Lipo, T. A., 1996, Vector Control and Dynamics of AC Drives, Clarendon Press, Oxford.
30.
Haug, E. J., 1992, Intermediate Dynamics, Prentice-Hall, Englewood Cliff, NJ.
You do not currently have access to this content.