This is the first part of a two-part paper developing a procedure for impedance synthesis and dynamic system conceptual design using a bond graph approach. The first part examines impedance synthesis with bond graphs and develops some useful properties of impedance related to bond graph structure. The second part of the paper uses the impedance synthesis approach as a tool in conceptual design for generating dynamic system solutions meeting frequency domain input-output specifications. In Part I, impedance and transfer functions are directly formulated from bond graphs. An invertible procedure is developed in order to allow for synthesis. Frequency domain properties of bond graphs are developed that will aid in impedance synthesis and the synthesis of bond graph structures from impedance specifications is formulated with a view toward conceptual design. The synthesis is not unique, a given impedance can be synthesized into multiple bond graph structures depending on its complexity. The work presented focuses on the synthesis of passive impedances but may be generalized for active systems.

This content is only available via PDF.
You do not currently have access to this content.