The formulation of a product portfolio requires extensive knowledge about the product market space and also the technical limitations of a company’s engineering design and manufacturing processes. A design methodology is presented that significantly enhances the product portfolio design process by eliminating the need for an exhaustive search of all possible product concepts. This is achieved through a decision tree data mining technique that generates a set of product concepts that are subsequently validated in the engineering design using multilevel optimization techniques. The final optimal product portfolio evaluates products based on the following three criteria: (1) it must satisfy customer price and performance expectations (based on the predictive model) defined here as the feasibility criterion; (2) the feasible set of products/variants validated at the engineering level must generate positive profit that we define as the optimality criterion; (3) the optimal set of products/variants should be a manageable size as defined by the enterprise decision makers and should therefore not exceed the product portfolio limit. The strength of our work is to reveal the tremendous savings in time and resources that exist when decision tree data mining techniques are incorporated into the product portfolio design and selection process. Using data mining tree generation techniques, a customer data set of 40,000 responses with 576 unique attribute combinations (entire set of possible product concepts) is narrowed down to 46 product concepts and then validated through the multilevel engineering design response of feasible products. A cell phone example is presented and an optimal product portfolio solution is achieved that maximizes company profit, without violating customer product performance expectations.

1.
Moon
,
S. K.
,
Kumara
,
S. R. T.
, and
Simpson
,
T. W.
, 2006, “
Data Mining and Fuzzy Clustering to Support Product Family Design
,” ASME Paper No. DETC2006/DAC-99287.
2.
Desai
,
P.
,
Kekre
,
S.
,
Radhakrishnan
,
S.
, and
Srinivasan
,
K.
, 2001, “
Product Differentiation and Commonality in Design: Balancing Revenue and Cost Drivers
,”
Manage. Sci.
0025-1909,
47
(
1
), pp.
37
51
.
3.
deWeck
,
O.
, and
Suh
,
E.
, 2006, “
Flexible Product Platforms: Framework and Case Study
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Sept.
4.
Farrell
,
R.
, and
Simpson
,
T.
, 2003, “
Product Platform Design to Improve Commonality in Custom Products
,”
J. Intell. Manuf.
0956-5515,
14
, pp.
541
556
.
5.
Fellini
,
R.
,
Kokkolaras
,
M.
, and
Papalambros
,
P.
, 2006, “
Quantitative Platform Selection in Optimal Design of Product Families, With Application to Automotive Engine Design
,”
J. Eng. Design
0954-4828,
17
(
5
), p.
429
446
.
6.
Fixon
,
S.
, 2005, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Operations Manage.
0272-6963,
23
(
3-4
), pp.
345
369
.
7.
Berry
,
S.
, and
Pakes
,
A.
, 2007, “
The Pure Characteristics Demand Model
,”
Int. Econom. Rev.
0020-6598,
48
(
4
), pp.
1193
1225
.
8.
Thevenot
,
H.
, and
Simpson
,
T.
, 2006, “
A Comprehensive Metric for Evaluating Component Commonality in a Product Family
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Sept.
9.
Pullmana
,
M. E.
,
Mooreb
,
W. L.
, and
Wardellb
,
D. G.
, 2002, “
A Comparison of Quality Function Deployment and Conjoint Analysis in New Product Design
,”
J. Prod. Innovation Manage.
0737-6782,
19
(
1
), pp.
354
364
.
10.
Cristiano
,
J. J.
,
Liker
,
J. K.
, and
White
,
C. W.
, III
, 2000, “
Customer-Driven Product Development Through Quality Function Deployment in the U.S. and Japan
,”
J. Prod. Innovation Manage.
0737-6782,
17
(
4
), pp.
286
308
.
11.
Ashihara
,
K.
, and
Ishii
,
K.
, 2005, “
Application of Quality Function Deployment for New Business r and d Strategy Development
,”
2005 ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL.
12.
Lowe
,
A.
,
Ridgway
,
K.
, and
Atkinson
,
H.
, 2000, “
QFD in New Production Technology Evaluation
,”
Int. J. Prod. Econ.
0925-5273,
67
, pp.
103
112
.
13.
Green
,
P. E.
,
Krieger
,
A. M.
, and
Wind
,
Y. J.
, 2001, “
Thirty Years of Conjoint Analysis: Reflections and Prospects
,”
Interfaces
0092-2102,
31
(
3
), pp.
56
73
.
14.
Moore
,
W. L.
,
Louviere
,
J. J.
, and
Verma
,
R.
, 1999, “
Using Conjoint Analysis to Help Design Product Platforms
,”
J. Prod. Innovation Manage.
0737-6782,
16
, pp.
27
39
.
15.
Grissom
,
M. D.
,
Belegundu
,
A. D.
,
Rangaswamy
,
A.
, and
Koopmann
,
G. H.
, 2006, “
Conjoint-Analysis-Based Multiattribute Optimization: Application in Acoustical Design
,”
Struct. Multidiscip. Optim.
1615-147X,
31
, pp.
8
16
.
16.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
411
418
.
17.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
0737-6782,
22
, pp.
42
62
.
18.
Olewnik
,
A. T.
, and
Lewis
,
K. E.
, 2007, “
Conjoint-HOQ: A Quantitative Methodology for Consumer-Driven Design
,”
Proceedings of the ASME 2007 IDET Conferences and CIE Conference IDETC/CIE 2007
,
ASME
,
New York
.
19.
Ben-Akiva
,
M.
, and
Lerman
,
S. R.
, 1985,
Discrete Choice Analysis: Theory and Application to Travel Demand
,
MIT
,
Cambridge, MA
.
20.
Tucker
,
C. S.
, and
Kim
,
H. M.
, 2007, “
Product Family Decision Tree Concept Generation and Validation Through Data Mining and Multi-Level Optimization
,”
Proceedings of the 33rd ASME Design Automation Conference
, Las Vegas, NV, Sept.
ASME
,
New York
.
21.
2006,
Decision Making in Engineering Design
,
K. E.
Lewis
,
W.
Chen
, and
L. C.
Schmidt
, eds.,
ASME
,
New York
.
22.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
490
497
.
23.
Wassenaar
,
H. J.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
514
523
.
24.
Berry
,
S. T.
, 1994, “
Estimating Discrete-Choice Models for Product Differentiation
,”
Rand J. Econ.
0741-6261,
25
(
2
), pp.
242
262
.
25.
Kim
,
H. M.
,
Kumar
,
D.
, and
Chen
,
W.
, 2006, “
Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design
,”
AIAA J.
0001-1452,
44
, pp.
67
77
.
26.
Kumar
,
D.
, 2007, “
Demand Modeling for Enterprise-Driven Product Design
,” Ph.D. thesis, Northwestern University, Evanston, IL.
27.
Kusiak
,
A.
, and
Smith
,
M.
, 2007, “
Data Mining in Design of Products and Production Systems
,”
Annu. Rev. Control
1367-5788,
31
, pp.
147
156
.
28.
Nanda
,
J.
,
Simpson
,
T.
,
Kumara
,
S. R. T.
, and
Shooter
,
S. B.
, 2006, “
A Methodology for Product Family Ontology Development Using Formal Concept Analysis and Web Ontology Language
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
, pp.
103
113
29.
Tucker
,
C. S.
, and
Kim
,
H. M.
, 2008, “
Optimal Product Portfolio Formulation by Merging Predictive Data Mining With Multilevel Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
041103
.
30.
Quinlan
,
J.
, 1986, “
Induction of Decision Trees
,”
Mach. Learn.
0885-6125,
1
(
1
), pp.
81
106
.
31.
Hunt
,
B.
,
Marin
,
J.
, and
Stone
,
P.
, 1966,
Experiments in Induction
,
Academic
,
New York
.
32.
Agard
,
B.
, and
Kusiak
,
A.
, 2004, “
Data-Mining-Based Methodology for the Design of Product Families
,”
Int. J. Prod. Res.
0020-7543,
42
(
15
), pp.
2955
2969
.
33.
Braha
,
D.
, 2001,
Data Mining for Design and Manufacturing
,
Kluwer
,
Dordrecht, The Netherlands
.
34.
Tsang
,
K. F.
,
Lau
,
H. C. W.
, and
Kwok
,
S. K.
, 2006, “
Development of a Data Mining System for Continual Process Quality Improvement
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
221
(
2
), pp.
179
193
.
35.
Quinlan
,
J.
, 1992,
C4.5: Programs for Machine Learning
,
Morgan Kaufmann
, Vol.
1
.
36.
Salzberg
,
S.
, 1994, “
Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan
,”
Mach. Learn.
0885-6125,
16
, pp.
235
240
.
37.
Li
,
X.
, and
Oladdson
,
S.
, 2005, “
Discovering Dispatching Rules Using Data Mining
,”
J. Sched.
,
8
(
6
), pp.
515
527
. 1094-6136
38.
Boulicaut
,
J.
,
Esposito
,
F.
,
Giannotti
,
F.
, and
Pedreschi
,
D.
, 2004,
Knowledge Discovery in Databases: PKDD 2004
,
Springer
,
New York
.
39.
Bruha
,
I.
, and
Franek
,
F.
, 1996, “
Comparison of Various Routines for Unknown Attribute Value Processing: The Covering Paradigm
,”
Int. J. Pattern Recognit. Artif. Intell.
0218-0014,
10
(
8
), pp.
939
955
.
40.
Grzymala-Busse
,
J. W.
, and
Hu
,
M.
, 2001, “
A Comparison of Several Approaches to Missing Attribute Values in Data Mining
,”
LNAI 2005
, pp.
378
385
.
41.
Ling
,
J. M.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J.
, 2006, “
Managing the Collection of Information Under Uncertainty Using Information Economics
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
980
990
.
42.
Hand
,
D. J.
, 1998, “
Data Mining: Statistics and More?
,”
Am. Stat.
0003-1305,
52
(
2
), pp.
112
118
.
43.
Kotsiantis
,
S. B.
,
Kanellopoulos
,
D.
, and
Pintelas
,
P. E.
, 2006, “
Data Preprocessing for Supervised Leaning
,”
Int. J. Comput. Sci.
1992-6669,
1
(
2
), pp.
111
117
.
44.
McEntire
,
J.
, 2003, “
D2K Toolkit User Manual
,” 1st ed., Office of Technology Management, National Center for Supercomputing Applications (NCSA), Urbana, IL, Apr.
45.
Campos
,
M.
,
Stengard
,
P.
, and
Milenova
,
B.
, 2005, “
Data-Centric Automated Data Mining
,”
Fourth International Conference on Machine Learning and Applications
.
46.
Amor
,
N.
,
Benferhat
,
S.
, and
Elouedi
,
Z.
, 2004, “
Naive Bayes Vs Decision Trees in Intrusion Detection Systems
,”
2004 ACM Symposium on Applied Computing
.
47.
Grzymala-Busse
,
J. W.
, and
Stefanowsk
,
J.
, 2001, “
Three Discretization Methods for Rule Induction
,”
Int. J. Intell. Syst.
0884-8173,
16
, pp.
29
38
.
48.
Perner
,
P.
, and
Trautzsch
,
S.
, 1998, “
Multi-Interval Discretization Methods for Decision Tree Learning
,”
Advances in Pattern Recognition
, Joint IAPR International Workshops,
Springer-Verlag
,
Sydney, Australia
, pp.
475
482
.
49.
Quinlan
,
J.
, 1996, “
Improved Use of Continuous Attributes in C4.5
,”
J. Artif. Intell. Res.
1076-9757,
4
, pp.
77
90
.
50.
Quinlan
,
J.
, 1992, “
Learning With Continuous Classes
,”
Proceedings of the Artificial Intelligence
,
A.
Adams
and
L.
Sterling
, eds., pp.
343
348
.
51.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R.
, and
Stone
,
C.
, 1984,
Classification and Regression Trees
,
Wadsworth and Brooks
,
Monterey, CA
.
52.
Kim
,
H. M.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
53.
Cooper
,
A. B.
,
Georgiopoulos
,
P.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
, 2006, “
Analytical Target Setting: An Enterprise Context in Optimal Product Design
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
4
13
.
54.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
481
489
.
55.
Hidalgo
,
I. J.
, and
Kim
,
H. M.
, 2006, “
Multistage System of Systems Model by Analytical Target Cascading
,”
Proceedings of the 11th AIAA/MAO Conference
, Portmouth, VA, Sept.
56.
Tucker
,
C. S.
, and
Kim
,
H. M.
, 2006, “
Cell Phone Customer Survey
,” https://webtools.uiuc.edu/survey/Secure?id=5617516https://webtools.uiuc.edu/survey/Secure?id=5617516, accessed, Oct.
57.
Buchmann
,
I.
, 1999, “
Battery Mystery Solved: Why Batteries for Digital Cell Phones Fail
,”
Batteries Conference on Applications and Advances
, Jan., pp.
359
362
.
58.
Klepper
,
M.
,
Miller
,
P.
, and
Miller
,
L.
, 2003,
Advanced Display Technologies
,
Printing Industry Center at Rochester Institute of Technology (RIT)
,
Rochester, NY
.
You do not currently have access to this content.