A multimodal teleoperation interface is introduced, featuring an integrated virtual reality (VR) based simulation augmented by sensors and image processing capabilities onboard the remotely operated vehicle. The proposed virtual reality interface fuses an existing VR model with live video feed and prediction states, thereby creating a multimodal control interface. VR addresses the typical limitations of video based teleoperation caused by signal lag and limited field of view, allowing the operator to navigate in a continuous fashion. The vehicle incorporates an onboard computer and a stereo vision system to facilitate obstacle detection. A vehicle adaptation system with a priori risk maps and a real-state tracking system enable temporary autonomous operation of the vehicle for local navigation around obstacles and automatic re-establishment of the vehicle’s teleoperated state. The system provides real time update of the virtual environment based on anomalies encountered by the vehicle. The VR based multimodal teleoperation interface is expected to be more adaptable and intuitive when compared with other interfaces.

1.
Knutzon
,
J. S.
,
Sannier
,
A. V.
, and
Oliver
,
J. H.
, 2004, “
An Immersive Approach to Command and Control
,”
Journal of Battlefield Technology
,
7
(
1
), pp.
37
42
.
2.
Lin
,
Q.
, and
Kuo
,
C.
, 1999, “
Assisting the Teleoperation of an Unmanned Underwater Vehicle Using a Synthetic Subsea Scenario
,”
Presence: Teleoperators and Virtual Environments
,
8
(
5
), pp.
520
530
.
3.
Knutzon
,
J. S.
, 2003, “
Tracking and Control Design for a Virtual Reality Aided Teleoperation System
,” MS thesis, Iowa State University, Ames, IA.
4.
Ruff
,
H. A.
,
Narayanan
,
S.
, and
Draper
,
M. H.
, 2002, “
Human Interaction With Levels of Automation and Decision-Aid Fidelity in the Supervisory Control of Multiple Simulated Unmanned Air Vehicles
,”
Presence: Teleoperators and Virtual Environments
,
11
(
4
), pp.
335
351
.
5.
Dunkler
,
O.
,
Mitchell
,
C. M.
,
Govindaraj
,
T.
, and
Ammons
,
J. C.
, 1988, “
The Effectiveness of Supervisory Control Strategies in Scheduling Flexible Manufacturing Systems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
18
(
2
), pp.
223
237
.
6.
Fong
,
T.
, and
Thorpe
,
C.
, 2001, “
Vehicle Teleoperation Interfaces
,”
Auton. Rob.
,
11
, pp.
9
18
. 0929-5593
7.
Hainsworth
,
D. W.
, 2001, “
Teleoperation User Interfaces for Mining Robotics
,”
Auton. Rob.
,
11
, pp.
19
28
. 0929-5593
8.
Kim
,
W. S.
,
Hannaford
,
B.
, and
Bejczy
,
A. K.
, 1992, “
Force-Reflection and Shared Compliant Control in Operating Telemanipulators With Time Delay
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
2
), pp.
176
185
.
9.
Grant
,
R.
, 2002, “
Reach Forward: What Happened to the Idea That Execution Authority Should be Delegated to the Lowest Possible Level
?,”
Air Force Magazine, Air Force Association
,
85
(
10
), pp.
42
47
.
10.
Glumm
,
M.
,
Kilduff
,
P.
, and
Masley
,
A.
, 1992, “
A Study on the Effects of Lens Focal Length on Remote Driver Performance
,” Army Research Laboratory, Technical Report No. ARL-TR-25.
11.
Walter
,
B. E.
, 2003, “
Virtual Reality Aided Teleoperation
,” MS thesis, Iowa State University, Ames, IA.
12.
Jarvis
,
R. A.
, 1999, “
Sensor Rich Teleoperation of an Excavating Machine
,”
Proceedings of Conference on Field and Service Robotics
, pp.
238
243
.
13.
Ricks
,
B.
,
Nielsen
,
C. W.
, and
Goodrich
,
M. A.
, 2004, “
Ecological Displays for Robot Interaction: A New Perspective
,”
Proceedings of Conference on Intelligent Robots and Systems
, Sendai, Japan, Vol.
3
, pp.
2855
2860
.
14.
Sugimoto
,
M.
,
Kagotani
,
G.
,
Nii
,
H.
,
Shiroma
,
N.
,
Inami
,
M.
, and
Matsuno
,
F.
, 2005, “
Time Follower’s Vision: A Teleoperation Interface With Past Images
,”
IEEE Comput. Graphics Appl.
,
25
(
1
), pp.
54
63
. 0272-1716
15.
Hughes
,
S. B.
, and
Lewis
,
M.
, 2005, “
Task-Driven Camera Operations for Robotic Exploration
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
35
(
4
), pp.
513
522
.
16.
Milgram
,
P.
,
Rastogi
,
A.
, and
Grodski
,
J. J.
, 1995, “
Telerobotic Control Using Augmented Reality
,”
Fourth IEEE International Workshop on Robot and Human Communication
, pp.
21
29
.
17.
Brujic-Okretic
,
V.
,
Guillemaut
,
J. Y.
,
Hitchin
,
L. J.
,
Michielen
,
M.
, and
Parker
,
G. A.
, 2003, “
Remote Vehicle Maneuvering Using Augmented Reality
,”
International Conference on Visual Information Engineering Ideas, Applications, Experience
, pp.
186
189
.
18.
Lawson
,
S. W.
,
Pretlove
,
J. R. G.
,
Wheeler
,
A. C.
, and
Parker
,
G. A.
, 2002, “
Augmented Reality as a Tool to Aid the Telerobotic Exploration and Characterization of Remote Environments
,”
Presence: Teleoperators and Virtual Environments
,
11
(
4
), pp.
352
367
.
19.
Fuchs
P.
,
Nashaashibi
F.
, and
Maman
D.
, 2002, “
Assistance for Telepresence by Stereovision Based Augmented Reality and Interactivity in 3D Space
,”
Presence: Teleoperators and Virtual Environments
,
11
(
5
), pp.
525
535
.
20.
Calhoun
,
G. L.
,
Draper
,
M. H.
,
Abernathy
,
M. F.
,
Delgado
,
F.
, and
Patzek
,
M.
, 2005, “
Synthetic Vision System for Improving Unmanned Aerial Vehicle Operator Situation Awareness
,”
Proceedings of SPIE Enhanced and Synthetic Vision
, Vol.
5802
, pp.
219
230
.
21.
Fong
,
T. W.
,
Thorpe
,
C.
, and
Baur
,
C.
, 2001, “
Advanced Interfaces for Vehicle Teleoperation: Collaborative Control, Sensor Fusion Displays, and Remote Driving Tools
,”
Auton. Rob.
,
11
, pp.
77
85
. 0929-5593
22.
Fong
,
T.
,
Conti
,
F.
,
Grange
,
S.
, and
Baur
,
C.
, 2000, “
Novel Interfaces for Remote Driving: Gesture, Haptic and PDA
,”
Proceedings of SPIE Telemanipulator and Telepresence Technologies VII
.
23.
Milgram
,
P.
, and
Ballantyne
,
J.
, 1997, “
Real World Teleoperation via Virtual Environment Modeling
,”
International Conference on Artificial Reality and Tele-existence
.
24.
Monferrer
,
A.
, and
Bonyuet
,
D.
, 2002, “
Cooperative Robot Teleoperation Through Virtual Reality Interfaces
,”
Proceedings of the Sixth International Conference on Information Visualization
, pp.
243
248
.
25.
Hine
,
B. P.
,
Stoker
,
C.
,
Sims
,
M.
,
Rasmussen
,
D.
,
Hontalas
,
P.
,
Fong
,
T.
,
Steele
,
J.
,
Barch
,
D.
,
Andersen
,
D.
,
Miles
,
E.
, and
Nygren
,
E.
, 1994, “
The Application of Telepresence and Virtual Reality to Subsea Exploration
,”
Second Workshop on Mobile Robots for Subsea Environments
.
26.
Thalmann
,
D.
,
Salamin
,
P.
,
Ott
,
R.
,
Gutiérrez
,
M.
, and
Vexo
,
F.
, 2006, “
Computer and Information Sciences: Advanced Mixed Reality Technologies for Surveillance and Risk Prevention Applications
,”
International Symposium on Computer and Information Sciences (ISCIS)
, pp.
13
23
.
27.
Sheik-Nainar
,
M. A.
,
Kaber
,
D. B.
, and
Chow
,
M.
, 2005, “
Control Gain Adaptation in Virtual Reality Mediated Human-Telerobot Interaction
,”
Int. J. Hum. Factors Manufact.
1090-8471,
15
, pp.
259
274
.
28.
Livatino
,
S.
, and
Privitera
,
F.
, 2006, “
3D Visualization Technologies for Teleguided Robots
,”
Proceedings of the ACM Symposium on Virtual Reality Software and Technology
, New York, pp.
240
243
.
29.
Demiralp
,
C.
,
Jackson
,
C. D.
,
Karelitz
,
D. B.
,
Zhang
,
S.
, and
Laidlaw
,
D. H.
, 2006, “
CAVE and Fishtank Virtual-Reality Displays: A Qualitative and Quantitative Comparison
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
12
(
3
), pp.
323
330
.
30.
Walter
,
B. E.
,
Knutzon
,
J. S.
,
Sannier
,
A. S.
, and
Oliver
,
J. H.
, 2004, “
VR Aided Control of UAVs
,”
Third AIAA Unmanned Unlimited Technical Conference, Workshop and Exhibit
, Paper No. 6320.
31.
Collins
,
R. T.
,
Cheng
,
Y.
,
Jaynes
,
C.
,
Stolle
,
F.
,
Wang
,
X.
,
Hanson
,
A. R.
, and
Riseman
,
E. M.
, 1995, “
Site Model Acquisition and Extension from Aerial Images
,”
Fifth International Conference on Computer Vision
, pp.
888
893
.
32.
Nguyen
,
A.
,
Bualat
,
M.
,
Edwards
,
J.
,
Flueckiger
,
L.
,
Neveu
,
C.
,
Schwehr
,
K.
,
Wagner
,
M. D.
, and
Zbinden
,
E.
, 2001, “
Virtual Reality Interfaces for Visualization and Control of Remote Vehicles
,”
Autonomous Robots
,
Kluwer Academic
,
Dordrecht
, Vol.
11
, pp.
59
68
.
33.
Kadavasal
,
M. S.
, and
Oliver
,
J. H.
, 2007, “
Sensor Enhanced Virtual Reality Teleoperation in Dynamic Environment
,”
Proceedings of the IEEE Virtual Reality Conference
, pp.
297
298
.
34.
Meier
,
R.
,
Fong
,
T. W.
,
Thorpe
,
C.
, and
Baur
,
C.
, 1999, “
Sensor Fusion Based User Interface for Vehicle Teleoperation
,”
International Conference on Field and Service Robotics
.
35.
Kroll
,
C. V.
, and
Roland
,
R. D.
, Jr.
, 1970, “
A Preview-Predictor Model of Driver Behavior in Emergency Situations
,” Cornell Aeronautical Laboratory, Inc., Bureau of Public Roads, Traffic Systems Research Division, Report No. CAL VJ-2251-V-6.
36.
Wormell
,
D.
, and
Foxlin
,
E.
, 2003, “
Advancements in 3D Interactive Devices for Virtual Environments
,”
Joint International Immersive Projection Technologies /Eurographics Workshop on Virtual Environments
.
37.
Balakrishnan
,
G.
,
Sainarayanan
,
G.
,
Nagarajan
,
R.
, and
Yaacob
,
S.
, 2004, “
Stereopsis Method for Visually Impaired to Identify Obstacles Based on Distance
,”
Proceedings of the Third International Conference on Image and Graphics
, pp.
580
583
.
38.
Zitnick
,
C.
, and
Kanade
,
T.
, 1999, “
A Cooperative Algorithm for Stereo Matching and Occlusion Detection
,” Robotics Institute, Carnegie Mellon University, Technical Report No. CMU-RI-TR-99-35.
39.
Roy
,
S.
, and
Cox
,
I.
, 1998, “
A Maximum-Flow Formulation of the N-Camera Stereo Correspondence Problem
,”
Sixth International Conference on Computer Vision
, pp.
492
502
.
40.
Birchfield
,
S.
, and
Tomasi
,
C.
, 1996, “
Depth Discontinuities by Pixel-to-Pixel Stereo
,” Stanford University, Technical Report No. STAN-CSTR-96-1573, pp.
1073
1083
.
You do not currently have access to this content.