A mixed variational principle and derivation of two simple and efficient tetrahedral finite elements with rotational degrees of freedom (DOF) are presented. Each element has four nodes. Every node has six DOF, which include three translational and three rotational DOF. Each element is capable of providing six rigid-body modes. The rotational DOF are based on the displacement formulation, while the translational DOF are hinged on the hybrid strain Hellinger–Reissner functional. Explicit expressions for stiffness matrices are obtained. Element performance has been evaluated with benchmark problems, indicating that they have superior accuracy compared with other lower-order tetrahedral elements.

1.
Parisch
,
H.
, 1979, “
A Critical Survey of the 9-Node Degenerated Shell Element With Special Emphasis on Thin Shell Element Application and Reduced Integration
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
20
, pp.
323
350
.
2.
Stolarski
,
H.
, and
Belystchko
,
T.
, 1982, “
Membrane Locking and Reduced Integration for Curved Elements
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
172
176
.
3.
Stolarski
,
H.
, and
Belystchko
,
T.
, 1983, “
Shear and Membrane Locking in Curved C0 Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
41
, pp.
279
296
.
4.
MacNeal
,
R. H.
, and
Harder
,
R. L.
, 1988, “
A Refined Four-Noded Membrane Element With Rotational Degrees of Freedom
,”
Comput. Struct.
0045-7949,
28
, pp.
75
88
.
5.
Irons
,
B.
, and
Ahmad
,
S.
, 1980,
Techniques of Finite Elements
,
Ellis Horwood
,
Chichester, UK
.
6.
Allman
,
D. J.
, 1984, “
A Compatible Triangular Element Including Vertex Rotations for Plane Elasticity Analysis
,”
Comput. Struct.
0045-7949,
19
, pp.
1
8
.
7.
Bergan
,
P. G.
, and
Felippa
,
C. A.
, 1985, “
A Triangular Membrane Element With Rotational Degrees of Freedom
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
50
, pp.
25
69
.
8.
Cook
,
R. D.
, 1986, “
On the Allman Triangle and a Related Quadrilateral Element
,”
Comput. Struct.
0045-7949,
22
, pp.
1065
1067
.
9.
Allman
,
D. J.
, 1988, “
Evaluation of the Constant Strain Triangle With Drilling Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2645
2655
.
10.
Ibrahimbegovic
,
A.
, and
Frey
,
F.
, 1994, “
Stress Resultant Geometrically Non-Linear Shell Theory With Drilling Rotations. Part III: Linearized Kinematics
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
3659
3683
.
11.
Sze
,
K. Y.
,
Sim
,
Y. S.
, and
Soh
,
A. K.
, 1997, “
A Hybrid Stress Quadrilateral Shell Element With Full Rotational D.O.F.s
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
1785
1800
.
12.
Hughes
,
T. J. R.
, and
Brezzi
,
F.
, 1989, “
On Drilling Degrees of Freedom
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
72
, pp.
105
121
.
13.
Reissner
,
E.
, 1965, “
A Note on Variational Principles in Elasticity
,”
Int. J. Solids Struct.
0020-7683,
1
, pp.
93
95
.
14.
Hughes
,
T. J. R.
,
Brezzi
,
F.
,
Masud
,
A.
, and
Harari
,
I.
, 1989, “
Finite Element With Drilling Degrees of Freedom: Theory and Numerical Evaluation
,” Preprint.
15.
Ibrahimbegovic
,
A.
,
Taylor
,
R. L.
, and
Wilson
,
E. L.
, 1990, “
A Robust Quadrilateral Membrane Finite Element With Drilling Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
, pp.
445
457
.
16.
To
,
C. W. S.
, and
Liu
,
M. L.
, 1994, “
Hybrid Strain Based Three-Node Flat Triangular Shell Elements
,”
Finite Elem. Anal. Design
0168-874X,
17
, pp.
169
203
.
17.
To
,
C. W. S.
, and
Wang
,
B.
, 1998, “
Hybrid Strain-Based Three-Node Flat Triangular Laminated Composite Shell Elements
,”
Finite Elem. Anal. Design
0168-874X,
28
, pp.
177
207
.
18.
To
,
C. W. S.
, and
Liu
,
W.
, 2003, “
Analysis of Laminated Composite Shell Structures With Piezoelectric Components
,”
Mechanics of Electromagnetic Solids
,
Kluwer Academic Publishers
,
Norwell, MA
, pp.
229
250
.
19.
Yunus
,
S. M.
,
Pawlak
,
T. P.
, and
Cook
,
R. D.
, 1991, “
Solid Elements With Rotational Degrees of Freedom: Part I—Hexahedron Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
573
592
.
20.
Pawlak
,
T. P.
,
Yunus
,
S. M.
, and
Cook
,
R. D.
, 1991, “
Solid Elements With Rotational Degrees of Freedom: Part II—Tetrahedron Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
593
610
.
21.
Sze
,
K. Y.
, and
Ghali
,
A.
, 1993, “
A Hybrid Brick Element With Rotational Degrees of Freedom
,”
Comput. Mech.
0178-7675,
12
, pp.
147
163
.
22.
Kozar
,
I.
, and
Ibrahimbegovic
,
A.
, 1995, “
A Finite Element Formulation of the Finite Rotation Solid Element
,”
Finite Elem. Anal. Design
0168-874X,
21
, pp.
75
110
.
23.
Sze
,
K. Y.
,
Soh
,
A. K.
, and
Sim
,
Y. S.
, 1996, “
An Explicit Hybrid-Stabilized Solid Element With Rotational Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2987
3005
.
24.
Sze
,
K. Y.
, and
Pan
,
Y. S.
, 2000, “
Hybrid Stress Tetrahedral Elements With Allman’s Rotational D.O.F.s
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
1055
1070
.
25.
Nguyen
,
V.
, 1982, “
Automatic Mesh Generation With Tetrahedron Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
18
, pp.
273
280
.
26.
Cavendish
,
J. C.
,
Field
,
D. A.
, and
Frey
,
W. H.
, 1985, “
An Approach to Automatic Three-Dimensional Finite Element Mesh Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
329
347
.
27.
Yerry
,
M. A.
, and
Shephard
,
M. S.
, 1985, “
Automatic Mesh Generation for Three-Dimensional Solids
,”
Comput. Struct.
0045-7949,
20
, pp.
221
223
.
28.
Schroeder
,
W. J.
, and
Shephard
,
M. S.
, 1988, “
Geometry-Based Fully Automatic Mesh Generation and the Delaunay Triangulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2503
2515
.
29.
Perucchio
,
R.
,
Saxena
,
M.
, and
Kela
,
A.
, 1989, “
Automatic Mesh Generation From Solid Models Based on Recursive Spatial Decompositions
,”
Int. J. Numer. Methods Eng.
0029-5981,
28
, pp.
2469
2501
.
30.
Schroeder
,
W. J.
, and
Shephard
,
M. S.
, 1990, “
A Combined Octra/Delaunay Method for Fully Automatic 3-D Mesh Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
29
, pp.
37
55
.
31.
Sze
,
K. Y.
,
Chow
,
C. L.
, and
Chen
,
W. J.
, 1992, “
On Invariance of Isoparametric Hybrid Elements
,”
Commun. Appl. Numer. Methods
0748-8025,
8
, pp.
385
406
.
32.
Sze
,
K. Y.
, 1992, “
On Geometric Invariance of TET4RX, Letter to the Editor
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
2199
.
33.
Pawlak
,
T. P.
,
Yunus
,
S. M.
, and
Cook
,
R. D.
, 1993, “
Solid Elements With Rotational Degrees of Freedom: Part II-Tetrahedron Elements, Authors’ Reply
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
1065
.
34.
Skeie
,
G.
, 1993, “
The Free Formulation: Linear Theory and Extensions With Applications to Tetrahedral Elements With Rotational Freedoms
,” Ph.D. thesis, Norwegian Institute of Technology, Trondheim, Norway.
35.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
36.
Chieslar
,
J. D.
, 1985, “
Hybrid Finite Elements for Solids and Shells
,” Ph.D. thesis, University of Calgary, Calgary, Canada.
37.
Tong
,
P.
, and
Pian
,
T. H. H.
, 1969, “
A Variational Principle and the Convergence of a Finite Element Method Based on Assumed Stress Distribution
,”
Int. J. Numer. Methods Eng.
0029-5981,
5
, pp.
463
472
.
38.
Pian
,
T. H. H.
, and
Chen
,
D. P.
, 1983, “
On the Suppression of Zero Energy Deformation Modes
,”
Int. J. Numer. Methods Eng.
0029-5981,
19
, pp.
1741
1752
.
39.
Fung
,
Y. C.
, 1965,
Foundation of Solid Mechanics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1988,
The Finite Element Method
,
McGraw-Hill
,
New York
, Vol.
1
.
41.
MacNeal
,
R. H.
, and
Harder
,
R. L.
, 1985, “
A Proposed Standard Set of Problems to Test Finite Element Accuracy
,”
Finite Elem. Anal. Design
0168-874X,
1
, pp.
3
20
.
42.
Robinson
,
J.
, and
Blackham
,
S.
, 1979, “
An Evaluation of Lower Order Membranes as Contained in the MSC/NASTRAN, ASAS, and PAFEC FEM Systems
,”
Proceedings of the Conference on Finite Element Methods and Technology
,
Robinson and Associates
,
Dorset, England
.
43.
Robinson
,
J.
, and
Blackham
,
S.
, 1981, “
An Evaluation of Plate Bending Elements: MSC/NASTRAN, ASAS, PAFEC, ANSYS, and SAP4
,”
Proceedings of the Conference on Finite Element Methods and Technology
,
Robinson and Associates
,
Dorset, England
.
44.
Carpenter
,
N.
,
Belystchko
,
T.
, and
Stolarski
,
H.
, 1986, “
Locking and Shear Factors in C0 Bending Elements
,”
Comput. Struct.
0045-7949,
22
, pp.
39
52
.
45.
Sze
,
K. Y.
, 1990, “
Development of Efficient and Robust Hybrid/Mixed Elements for Solid Structures
,” Ph.D. thesis, University of Hong Kong, Hong Kong.
46.
To
,
C. W. S.
, and
Liu
,
M. L.
, 2001, “
Geometrically Nonlinear Analysis of Layerwise Anisotropic Shell Structures by Hybrid Strain Based Lower Order Elements
,”
Finite Elem. Anal. Design
0168-874X,
37
, pp.
1
34
.
You do not currently have access to this content.