A mixed variational principle and derivation of two simple and efficient tetrahedral finite elements with rotational degrees of freedom (DOF) are presented. Each element has four nodes. Every node has six DOF, which include three translational and three rotational DOF. Each element is capable of providing six rigid-body modes. The rotational DOF are based on the displacement formulation, while the translational DOF are hinged on the hybrid strain Hellinger–Reissner functional. Explicit expressions for stiffness matrices are obtained. Element performance has been evaluated with benchmark problems, indicating that they have superior accuracy compared with other lower-order tetrahedral elements.
Issue Section:
Research Papers
1.
Parisch
, H.
, 1979, “A Critical Survey of the 9-Node Degenerated Shell Element With Special Emphasis on Thin Shell Element Application and Reduced Integration
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 20
, pp. 323
–350
.2.
Stolarski
, H.
, and Belystchko
, T.
, 1982, “Membrane Locking and Reduced Integration for Curved Elements
,” ASME J. Appl. Mech.
0021-8936, 49
, pp. 172
–176
.3.
Stolarski
, H.
, and Belystchko
, T.
, 1983, “Shear and Membrane Locking in Curved C0 Elements
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 41
, pp. 279
–296
.4.
MacNeal
, R. H.
, and Harder
, R. L.
, 1988, “A Refined Four-Noded Membrane Element With Rotational Degrees of Freedom
,” Comput. Struct.
0045-7949, 28
, pp. 75
–88
.5.
Irons
, B.
, and Ahmad
, S.
, 1980, Techniques of Finite Elements
, Ellis Horwood
, Chichester, UK
.6.
Allman
, D. J.
, 1984, “A Compatible Triangular Element Including Vertex Rotations for Plane Elasticity Analysis
,” Comput. Struct.
0045-7949, 19
, pp. 1
–8
.7.
Bergan
, P. G.
, and Felippa
, C. A.
, 1985, “A Triangular Membrane Element With Rotational Degrees of Freedom
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 50
, pp. 25
–69
.8.
Cook
, R. D.
, 1986, “On the Allman Triangle and a Related Quadrilateral Element
,” Comput. Struct.
0045-7949, 22
, pp. 1065
–1067
.9.
Allman
, D. J.
, 1988, “Evaluation of the Constant Strain Triangle With Drilling Rotations
,” Int. J. Numer. Methods Eng.
0029-5981, 26
, pp. 2645
–2655
.10.
Ibrahimbegovic
, A.
, and Frey
, F.
, 1994, “Stress Resultant Geometrically Non-Linear Shell Theory With Drilling Rotations. Part III: Linearized Kinematics
,” Int. J. Numer. Methods Eng.
0029-5981, 37
, pp. 3659
–3683
.11.
Sze
, K. Y.
, Sim
, Y. S.
, and Soh
, A. K.
, 1997, “A Hybrid Stress Quadrilateral Shell Element With Full Rotational D.O.F.s
,” Int. J. Numer. Methods Eng.
0029-5981, 40
, pp. 1785
–1800
.12.
Hughes
, T. J. R.
, and Brezzi
, F.
, 1989, “On Drilling Degrees of Freedom
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 72
, pp. 105
–121
.13.
Reissner
, E.
, 1965, “A Note on Variational Principles in Elasticity
,” Int. J. Solids Struct.
0020-7683, 1
, pp. 93
–95
.14.
Hughes
, T. J. R.
, Brezzi
, F.
, Masud
, A.
, and Harari
, I.
, 1989, “Finite Element With Drilling Degrees of Freedom: Theory and Numerical Evaluation
,” Preprint.15.
Ibrahimbegovic
, A.
, Taylor
, R. L.
, and Wilson
, E. L.
, 1990, “A Robust Quadrilateral Membrane Finite Element With Drilling Degrees of Freedom
,” Int. J. Numer. Methods Eng.
0029-5981, 30
, pp. 445
–457
.16.
To
, C. W. S.
, and Liu
, M. L.
, 1994, “Hybrid Strain Based Three-Node Flat Triangular Shell Elements
,” Finite Elem. Anal. Design
0168-874X, 17
, pp. 169
–203
.17.
To
, C. W. S.
, and Wang
, B.
, 1998, “Hybrid Strain-Based Three-Node Flat Triangular Laminated Composite Shell Elements
,” Finite Elem. Anal. Design
0168-874X, 28
, pp. 177
–207
.18.
To
, C. W. S.
, and Liu
, W.
, 2003, “Analysis of Laminated Composite Shell Structures With Piezoelectric Components
,” Mechanics of Electromagnetic Solids
, Kluwer Academic Publishers
, Norwell, MA
, pp. 229
–250
.19.
Yunus
, S. M.
, Pawlak
, T. P.
, and Cook
, R. D.
, 1991, “Solid Elements With Rotational Degrees of Freedom: Part I—Hexahedron Elements
,” Int. J. Numer. Methods Eng.
0029-5981, 31
, pp. 573
–592
.20.
Pawlak
, T. P.
, Yunus
, S. M.
, and Cook
, R. D.
, 1991, “Solid Elements With Rotational Degrees of Freedom: Part II—Tetrahedron Elements
,” Int. J. Numer. Methods Eng.
0029-5981, 31
, pp. 593
–610
.21.
Sze
, K. Y.
, and Ghali
, A.
, 1993, “A Hybrid Brick Element With Rotational Degrees of Freedom
,” Comput. Mech.
0178-7675, 12
, pp. 147
–163
.22.
Kozar
, I.
, and Ibrahimbegovic
, A.
, 1995, “A Finite Element Formulation of the Finite Rotation Solid Element
,” Finite Elem. Anal. Design
0168-874X, 21
, pp. 75
–110
.23.
Sze
, K. Y.
, Soh
, A. K.
, and Sim
, Y. S.
, 1996, “An Explicit Hybrid-Stabilized Solid Element With Rotational Degrees of Freedom
,” Int. J. Numer. Methods Eng.
0029-5981, 39
, pp. 2987
–3005
.24.
Sze
, K. Y.
, and Pan
, Y. S.
, 2000, “Hybrid Stress Tetrahedral Elements With Allman’s Rotational D.O.F.s
,” Int. J. Numer. Methods Eng.
0029-5981, 48
, pp. 1055
–1070
.25.
Nguyen
, V.
, 1982, “Automatic Mesh Generation With Tetrahedron Elements
,” Int. J. Numer. Methods Eng.
0029-5981, 18
, pp. 273
–280
.26.
Cavendish
, J. C.
, Field
, D. A.
, and Frey
, W. H.
, 1985, “An Approach to Automatic Three-Dimensional Finite Element Mesh Generation
,” Int. J. Numer. Methods Eng.
0029-5981, 21
, pp. 329
–347
.27.
Yerry
, M. A.
, and Shephard
, M. S.
, 1985, “Automatic Mesh Generation for Three-Dimensional Solids
,” Comput. Struct.
0045-7949, 20
, pp. 221
–223
.28.
Schroeder
, W. J.
, and Shephard
, M. S.
, 1988, “Geometry-Based Fully Automatic Mesh Generation and the Delaunay Triangulation
,” Int. J. Numer. Methods Eng.
0029-5981, 26
, pp. 2503
–2515
.29.
Perucchio
, R.
, Saxena
, M.
, and Kela
, A.
, 1989, “Automatic Mesh Generation From Solid Models Based on Recursive Spatial Decompositions
,” Int. J. Numer. Methods Eng.
0029-5981, 28
, pp. 2469
–2501
.30.
Schroeder
, W. J.
, and Shephard
, M. S.
, 1990, “A Combined Octra/Delaunay Method for Fully Automatic 3-D Mesh Generation
,” Int. J. Numer. Methods Eng.
0029-5981, 29
, pp. 37
–55
.31.
Sze
, K. Y.
, Chow
, C. L.
, and Chen
, W. J.
, 1992, “On Invariance of Isoparametric Hybrid Elements
,” Commun. Appl. Numer. Methods
0748-8025, 8
, pp. 385
–406
.32.
Sze
, K. Y.
, 1992, “On Geometric Invariance of TET4RX, Letter to the Editor
,” Int. J. Numer. Methods Eng.
0029-5981, 33
, pp. 2199
.33.
Pawlak
, T. P.
, Yunus
, S. M.
, and Cook
, R. D.
, 1993, “Solid Elements With Rotational Degrees of Freedom: Part II-Tetrahedron Elements, Authors’ Reply
,” Int. J. Numer. Methods Eng.
0029-5981, 36
, pp. 1065
.34.
Skeie
, G.
, 1993, “The Free Formulation: Linear Theory and Extensions With Applications to Tetrahedral Elements With Rotational Freedoms
,” Ph.D. thesis, Norwegian Institute of Technology, Trondheim, Norway.35.
Belytschko
, T.
, Liu
, W. K.
, and Moran
, B.
, 2000, Nonlinear Finite Elements for Continua and Structures
, Wiley
, New York
.36.
Chieslar
, J. D.
, 1985, “Hybrid Finite Elements for Solids and Shells
,” Ph.D. thesis, University of Calgary, Calgary, Canada.37.
Tong
, P.
, and Pian
, T. H. H.
, 1969, “A Variational Principle and the Convergence of a Finite Element Method Based on Assumed Stress Distribution
,” Int. J. Numer. Methods Eng.
0029-5981, 5
, pp. 463
–472
.38.
Pian
, T. H. H.
, and Chen
, D. P.
, 1983, “On the Suppression of Zero Energy Deformation Modes
,” Int. J. Numer. Methods Eng.
0029-5981, 19
, pp. 1741
–1752
.39.
Fung
, Y. C.
, 1965, Foundation of Solid Mechanics
, Prentice-Hall
, Englewood Cliffs, NJ
.40.
Zienkiewicz
, O. C.
, and Taylor
, R. L.
, 1988, The Finite Element Method
, McGraw-Hill
, New York
, Vol. 1
.41.
MacNeal
, R. H.
, and Harder
, R. L.
, 1985, “A Proposed Standard Set of Problems to Test Finite Element Accuracy
,” Finite Elem. Anal. Design
0168-874X, 1
, pp. 3
–20
.42.
Robinson
, J.
, and Blackham
, S.
, 1979, “An Evaluation of Lower Order Membranes as Contained in the MSC/NASTRAN, ASAS, and PAFEC FEM Systems
,” Proceedings of the Conference on Finite Element Methods and Technology
, Robinson and Associates
, Dorset, England
.43.
Robinson
, J.
, and Blackham
, S.
, 1981, “An Evaluation of Plate Bending Elements: MSC/NASTRAN, ASAS, PAFEC, ANSYS, and SAP4
,” Proceedings of the Conference on Finite Element Methods and Technology
, Robinson and Associates
, Dorset, England
.44.
Carpenter
, N.
, Belystchko
, T.
, and Stolarski
, H.
, 1986, “Locking and Shear Factors in C0 Bending Elements
,” Comput. Struct.
0045-7949, 22
, pp. 39
–52
.45.
Sze
, K. Y.
, 1990, “Development of Efficient and Robust Hybrid/Mixed Elements for Solid Structures
,” Ph.D. thesis, University of Hong Kong, Hong Kong.46.
To
, C. W. S.
, and Liu
, M. L.
, 2001, “Geometrically Nonlinear Analysis of Layerwise Anisotropic Shell Structures by Hybrid Strain Based Lower Order Elements
,” Finite Elem. Anal. Design
0168-874X, 37
, pp. 1
–34
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.