The goal of “as-built” computational modeling is to incorporate the most representative geometry and material information for an (fabricated or legacy) object into simulations. While most engineering finite element simulations are based on an object’s idealized “as-designed” configuration with information obtained from technical drawings or computer-aided design models, as-built modeling uses nondestructive characterization and metrology techniques to provide the feature information. By incorporating more representative geometry and material features as initial conditions, the uncertainty in the simulation results can be reduced, providing a more realistic understanding of the event and object being modeled. In this paper, key steps and technology areas in the as-built modeling framework are: (1) inspection using nondestructive characterization and metrology techniques; (2) data reduction (signal and image processing including artifact removal, data sensor fusion, and geometric feature extraction); and (3) engineering and physics analysis using finite element codes. We illustrate the process with a cylindrical phantom and include a discussion of the key concepts and areas that need improvement. Our results show that reasonable as-built initial conditions based on a volume overlap criteria can be achieved and that notable differences between simulations of the as-built and as-designed configurations can be observed for a given load case. Specifically, a volume averaged difference of accumulated plastic strain of 3% and local spatially varying differences up to 10%. The example presented provides motivation and justification to engineering teams for the additional effort required in the as-built modeling of high value parts. Further validation of the approach has been proposed as future work.

1.
Waters
,
A. M.
,
Martz
,
H. E.
,
Dolan
,
K. W.
,
Horstemeyer
,
M. F.
, and
Green
,
R. E.
, 2000, “
Three Dimensional Void Analysis of AM60B Magnesium Alloy Tensile Bars Using Computed Tomography Imagery
,”
Mater. Eval.
0025-5327,
58
, pp.
1221
1227
.
2.
Horstemeyer
,
M. F.
,
Gall
,
K.
,
Dolan
,
K. W.
,
Waters
,
A.
,
Haskins
,
J. J.
,
Perkins
,
D. E.
,
Gokhale
,
A. M.
, and
Dighe
,
M. D.
, 2003, “
Numerical, Experimental, Nonedestructive, and Image Analyses of Damage Progression in Cast A356 Aluminum Notch Tensile Bars
,”
Theor. Appl. Fract. Mech.
0167-8442,
39
, pp.
23
45
.
3.
Georgeson
,
G.
,
Crews
,
A.
, and
Bossi
,
R.
, 1992, “
X-Ray Computed Tomography Analysis for Concurrent Engineering
,” Concurrent Engineering Approach to Materials Processing, November 1-5, Chicago, IL, pp.
231
245
.
4.
Abd El-Ghany
,
K. M.
, and
Farag
,
M. M.
, 2000, “
Expert System to Automate the Finite Element Analysis for Non-Destructive Testing
,”
NDT & E Int.
0963-8695,
33
, pp.
409
415
.
5.
Balazs
,
B.
,
Maxwell
,
R.
,
Kokko
,
E.
,
DeTeresa
,
S.
, and
Smith
,
T.
, 2002, “
Techniques for the Analysis of Aging Signatures of Silica-Filled Siloxanes
,”
3rd MODEST Conference
, July,
Budapest Hungary
.
6.
Boyd
,
S. K.
, and
Muller
,
R.
, 2006, “
Smooth Surface Meshing for Automated Finite Element Model Generation From 3D Image Data
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1287
1295
.
7.
Hirota
,
N.
, and
Yoshikawa
,
N.
, 2001, “
Finite Element Modeling of Textile Composite Using X-ray CT Images
,”
Proceedings of APCFS & ATEM
, Vol.
2
, pp.
623
626
.
8.
Benko
,
P.
,
Martin
,
R.
, and
Varady
,
T.
, 2001, “
Algorithms for Reverse Engineering Boundary Representation Models
,”
CAD
0010-4485,
33
(
11
), pp.
839
851
.
9.
Browne
,
J.
,
Koshy
,
M.
, and
Stanley
,
J.
, 1998, “
On the Application of Discrete Tomography to CT-Assisted Engineering and Design
,”
Int. J. Imaging Syst. Technol.
0899-9457,
9
, pp.
78
84
.
10.
Menegazzi
,
P.
, and
Trapy
,
J.
, 1997, “
A New Approach to the Modelling of Engine Cooling Systems
,”
Oil Gas Sci. Technol.
,
52
(
5
), pp.
531
539
.
11.
Viceconti
,
M.
,
Davinelli
,
M.
,
Taddei
,
F.
, and
Cappello
,
A.
, 2004, “
Automatic Generation of Accurate Subject-Specific Bone Finite Element Models to be Used in Clinical Studies
,”
J. Biomech.
0021-9290,
37
, pp.
1597
1605
.
12.
Bossart
,
P.-L.
,
Martz
,
H. E.
,
Brand
,
H. R.
, and
Hollerbach
,
K.
, 1996, “
Application of 3D X-ray CT Data Sets to Finite Element Analysis
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
D. O.
Thompson
, and
D. E.
Chimenti
, Eds.,
Plenum Press
,
New York
,
15
, pp.
489
496
.
13.
Zhang
,
Y.
, and
Bajaj
,
C.
, 2004, “
Adaptive and Quality Quadrilateral/Hexahedral Meshing From Volumetric Data
,”
13th International Meshing Roundtable, Williamsburg Virginia
.
14.
Zhang
,
Y.
,
Bajaj
,
C.
, and
Shon
,
B. S.
, 2004, “
3D Finite Element Meshing From Imaging Data
,”
Comput. Methods Appl. Mech. Eng.
0045-7825.
15.
Schmitt
,
J.
,
Meiforth
,
J.
, and
Lengsfeld
,
M.
, 2001, “
Development of a Hybrid Finite Element Model for Individual Simulation of Intertrochanteric Osteotomies
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
529
539
.
16.
Stolken
,
J. S.
, and
Kinney
,
J. H.
, 2003, “
On the Importance of Geometric Nonlinearity in Finite-Element Simulations of Trabecular Bone Failure
,”
Bone (N.Y.)
8756-3282,
33
, pp.
494
504
.
17.
Jaecques
,
S. V. N.
,
Ooserwyck
,
H.
,
Mararu
,
L.
,
Cleynenbreugel
,
T.
,
Smet
,
E.
,
Wevers
,
M.
,
Naert
,
I.
, and Vander
Sloten
,
J.
, 2004, “
Individualized, Micro CT-based Finite Element Modeling as a Tool for Biomechanical Analysis Related to Tissue Engineering of Bone
,”
Biomaterials
0142-9612,
25
, pp.
1683
1696
.
18.
Taylor
,
C.
,
Hughes
,
T.
, and
Zarins
,
C.
, 1998, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp
155
196
.
19.
Antiga
,
L.
,
Ene-Iordache
,
B.
,
Caverni
,
L.
,
Cornalba
,
G. P.
, and
Remuzzi
,
A.
, 2002, “
Geometric Reconstruction for Computational Mesh Generation of Arterial Bifurcations From CT Angiography
,”
Comput. Med. Imaging Graph.
0895-6111,
26
, pp.
227
235
.
20.
Wu
,
Z.
, and
Sullivan
,
J.
, 2001, “
Automatic Finite Element Mesh Generation From MRI Scans for Breast Cancer Investigations
,”
Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference
.
21.
Barrett
,
H. H.
, and
Swindell
,
W.
, 1981,
Radiological Imaging
,
Academic Press
,
New York
.
22.
Martz
,
H. E.
, Jr.
,
Logan
,
C. M.
, and
Shull
,
P. J.
, 2002, “
Radiology
,”
Nondestructive Evaluation: Theory, Techniques and Applications
,
Peter J.
Shull
, Ed.
Marcel Dekker, Inc.
,
New York
.
23.
Chawner
,
J.
, 2003, “
Issues in Applied Mesh Generation, Pre-Conference Short Course: Mesh Generation and Automated Simulation
,”
7th National Congress on Computational Mechanics
.
24.
Childs
,
H.
,
Brugger
,
E.
,
Bonnell
,
K.
,
Meredith
,
J.
,
Miller
,
M.
,
Whitlock
,
B.
, and
Max
,
N.
, 2005, “
A Contract Based System for Large Data Visualization
,”
Proceedings of IEEE Visualization
.
25.
TrueGrid Manual
, 2000, Version 2.0.0 Revision 2.,
XYZ Scientific Applications, Inc.
26.
Cubit On-Line Manual
, 2005, Version 10.0,
Sandia National Laboratories
,
CA
.
27.
Sheffer
,
A.
, and
Bercovier
,
M.
, 2000, “
Hexahedral Meshing of Non-Linear Volumes Using Voronoi Faces and Edges
,”
Int. J. Numer. Methods Eng.
0029-5981,
49
.
28.
Bern
,
M.
, and
Plassmann
,
P.
, 1999, “
Mesh Generation
,”
Handbook of Computational Geometry
,
6
.
29.
Owen
,
S.
, 2003, “
An Introduction to Unstructured Mesh Generation
,”
Pre-Conference Short Course: Mesh Generation and Automated Simulation, 7th National Congress on Computational Mechanics
.
30.
Garimella
,
R.
, 2003, “
Untangling of 2D Triangular and Quadrilateral Meshes in ALE Simulations
,”
Workshop on Mesh Quality and Dynamic Meshing, 7th National Congress on Computational Mechanics
.
31.
Sharp
,
R.
et al.
, 2005,
Users Manual for ALE3D: An Arbitrary Lagrange/Eulerian 3D Code System
, Lawrence Livermore National Laboratory, UCRL-MA-152204 Rev. 3.
32.
Van Trees
,
H. L.
, 1968,
Detection, Estimation, and Modulation Theory, Part I
,
John Wiley & Sons
,
New York
.
33.
Rossi
,
D. J.
, and
Wilsky
,
A. S.
, 1984, “
Reconstruction From Projections Based on Detection and Estimation of Objects—Parts I and II: Performance Analysis and Robustness Analysis
,”
IEEE Trans. Acoust., Speech, Signal Process.
0096-3518,
ASSP-32
, pp.
886
906
.
34.
Ye
,
J. C.
,
Bressler
,
Y.
, and
Moulin
,
P.
, 2003, “
Cramer-Rao Bounds for Parametric Shape Estimation in Inverse Problems
,”
IEEE Trans. Image Process.
1057-7149,
12
, pp.
71
84
, 2003.
35.
Chambers
,
D. H.
,
Goodman
,
D. M.
, and
Leach
,
R. R.
, 2003, “
As-Built Model Generation for a Cylindrical Test Object
,” Lawrence Livermore National Laboratory, UCRL-TR-200695.
36.
West
,
R. W.
, and
Williams
,
R. A.
, 1999, “
Opportunities for Data Fusion in Multi-Modality Tomography
,”
1st World Congress Industrial Process Tomography
, pp.
195
200
.
You do not currently have access to this content.