Abstract

Due to their high thermal efficiency and long functional life, diesel engines have become ubiquitous in automobiles. Diesel engines are vulnerable to component failure and sensor faults. New cognitive fault diagnosis algorithms are crucial for the safe operation of equipment. Conventional model-based approaches are limited in their capabilities owing to the approximations made during the development of these models. In comparison, the efficacy of most of the data-driven approaches depends on the quantity of data. Additionally, the existing data-driven algorithms do not consider the system’s physics and are susceptible to overfitting issues. To address the aforementioned issues, we propose an end-to-end autonomous hybrid physics-infused one-dimensional (1D) convolutional neural network (CNN)-based ensemble learning framework combining a low-fidelity physics-based engine model, autoencoder (AE), 1D CNNs, and a multilayer perceptron (MLP) for fault diagnosis. The system used to demonstrate the capabilities of the devised model is a 7.6-l, 6-cylinder, 4-stroke diesel engine. The physics model guarantees that the estimations produced by the framework conform to the engine’s actual behavior, and the ensemble deep learning module overcomes the overfitting issue. Empirical results show that the framework is efficient and reliable against data from a real engine setup under various operating conditions, such as changing injection duration, varying injection pressure, and engine speed. Besides, the framework is tested against noisy data, reaffirming the model’s robustness when subjected to actual working conditions where acquired noise is a norm.

References

1.
Isermann
,
R.
,
1995
, “
Model Base Fault Detection and Diagnosis Methods
,”
Proceedings of 1995 American Control Conference-ACC’95
,
Seattle, WA,
,
June 21–23
, Vol.
3
,
IEEE
, pp.
1605
1609
.
2.
Isermann
,
R.
,
2005
, “
Model-Based Fault-Detection and Diagnosis—Status and Applications
,”
Ann. Rev. Control
,
29
(
1
), pp.
71
85
.
3.
Schwarte
,
A.
,
Kimmich
,
F.
, and
Isermann
,
R.
,
2002
, “
Model-Based Fault Detection and Diagnosis for Diesel Engines
,”
MTZ Worldwide
,
63
(
7
), pp.
31
34
.
4.
Gupta
,
A.
,
Franchek
,
M.
,
Grigoriadis
,
K.
, and
Smith
,
D. J.
,
2011
, “
Model Based Failure Detection of Diesel Particulate Filter
,”
Proceedings of the 2011 American Control Conference
,
San Francisco, CA
,
June 29–July 1
,
IEEE
, pp.
1567
1572
.
5.
Nadeer
,
E.
,
Mukhopadhyay
,
S.
, and
Patra
,
A.
,
2018
, “
Hybrid System Model Based Fault Diagnosis of Automotive Engines
,”
Fault Diagnosis of Hybrid Dynamic and Complex Systems
,
M.
Sayed-Mouchawe
, ed.,
Springer
,
Cham, Switzerland
, pp.
153
178
.
6.
Wang
,
Y.
, and
Chu
,
F.
,
2005
, “
Real-Time Misfire Detection via Sliding Mode Observer
,”
Mech. Syst. Signal. Process.
,
19
(
4
), pp.
900
912
.
7.
Constantinescu
,
R. F.
,
Lawrence
,
P. D.
,
Hill
,
P. G.
, and
Brown
,
T. S.
,
1995
, “
Model-Based Fault Diagnosis of a Two-Stroke Diesel Engine
,” 1
995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century
,
Vancouver, British Columbia, Canada
,
January
, Vol.
3
,
IEEE
, pp.
2216
2220
.
8.
Twiddle
,
J.
, and
Jones
,
N.
,
2002
, “
Fuzzy Model-Based Condition Monitoring and Fault Diagnosis of a Diesel Engine Cooling System
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
216
(
3
), pp.
215
224
.
9.
Bonissone
,
P. P.
, and
Johnson
,
H. E.
,
1984
, “
Expert System for Diesel Electric Locomotive Repair
,”
Human Syst. Manag.
,
4
(
4
), pp.
255
262
.
10.
Xu
,
X.
,
Yan
,
X.
,
Sheng
,
C.
,
Yuan
,
C.
,
Xu
,
D.
, and
Yang
,
J.
,
2017
, “
A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines
,”
IEEE. Trans. Syst. Man. Cybernet. Syst.
,
50
(
2
), pp.
656
672
.
11.
Macin
,
V.
,
Tormos
,
B.
,
Sala
,
A.
, and
Ramirez
,
J.
,
2006
, “
Fuzzy Logic-Based Expert System for Diesel Engine Oil Analysis Diagnosis
,”
Insight: Non-Destr. Test. Cond. Monit.
,
48
(
8
), pp.
462
469
.
12.
Peña
,
M.
,
Cerrada
,
M.
,
Medina
,
R.
,
Cabrera
,
D.
, and
Sánchez
,
R. V.
,
2023
, “
Poincaré Plot Features and Statistical Features From Current and Vibration Signals for Fault Severity Classification of Helical Gear Tooth Breaks
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021009
.
13.
Singh
,
S. K.
,
Rai
,
R.
,
Khawale
,
R. P.
,
Patel
,
D.
,
Bielecki
,
D.
,
Nguyen
,
R.
,
Wang
,
J.
, and
Zhang
,
Z.
,
2024
, “
Deep Learning in Computational Design Synthesis: A Comprehensive Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
4
), p.
040801
.
14.
Kumar
,
S.
, and
Ganga
,
D.
,
2024
, “
Combinational Framework for Classification of Bearing Faults in Rotating Machines
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
2
), p.
021012
.
15.
O’Donnell
,
J.
, and
Yoon
,
H.-S.
,
2024
, “
Determination of Multi-Component Failure in Automotive System Using Deep Learning
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
2
), p.
021005
.
16.
Mubarak
,
A.
,
Asmelash
,
M.
,
Azhari
,
A.
,
Haggos
,
F. Y.
, and
Mulubrhan
,
F.
,
2023
, “
Machine Health Management System Using Moving Average Feature With Bidirectional Long-Short Term Memory
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
031002
.
17.
Feng
,
Z.
,
Hu
,
X.
,
Tian
,
Z.
,
Jiang
,
B.
,
Zhang
,
H.
, and
Zhang
,
W.
,
2023
, “
Bi-LSTM-Based Dynamic Prediction Model for Pulling Speed of Czochralski Single-Crystal Furnace
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041010
.
18.
Zhao
,
H.
,
Mao
,
Z.
,
Zhang
,
J.
,
Zhang
,
X.
,
Zhao
,
N.
, and
Jiang
,
Z.
,
2021
, “
Multi-Branch Convolutional Neural Networks With Integrated Cross-Entropy for Fault Diagnosis in Diesel Engines
,”
Meas. Sci. Technol.
,
32
(
4
), p.
045103
.
19.
Tsaganos
,
G.
,
Nikitakos
,
N.
,
Dalaklis
,
D.
,
Ölcer
,
A.
, and
Papachristos
,
D.
,
2020
, “
Machine Learning Algorithms in Shipping: Improving Engine Fault Detection and Diagnosis via Ensemble Methods
,”
WMU J. Maritime Affairs
,
19
, pp.
51
72
.
20.
Cai
,
C.
,
Weng
,
X.
, and
Zhang
,
C.
,
2017
, “
A Novel Approach for Marine Diesel Engine Fault Diagnosis
,”
Cluster Comput.
,
20
, pp.
1691
1702
.
21.
Dourado
,
A.
, and
Viana
,
F. A.
,
2020
, “
Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061007
.
22.
Taghizadeh
,
M.
,
Nabian
,
M. A.
, and
Alemazkoor
,
N.
,
2023
, “
Multi-Fidelity Physics-Informed Generative Adversarial Network for Solving Partial Differential Equations
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
11
), p.
111003
.
23.
Janssen
,
J.
,
Haikal
,
G.
,
DeCarlo
,
E.
,
Hartnett
,
M.
, and
Kirby
,
M.
,
2023
, “
A Physics-Informed General Convolutional Network for the Computational Modeling of Materials With Damage
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
11
), p.
111002
.
24.
Chen
,
J.
,
Pierce
,
J.
,
Williams
,
G.
,
Simpson
,
T. W.
,
Meisel
,
N.
,
Prabha Narra
,
S.
, and
McComb
,
C.
,
2024
, “
Accelerating Thermal Simulations in Additive Manufacturing by Training Physics-Informed Neural Networks With Randomly-Synthesized Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
1
), p.
011004
.
25.
Manyar
,
O. M.
,
Cheng
,
J.
,
Levine
,
R.
,
Krishnan
,
V.
,
Barbič
,
J.
, and
Gupta
,
S. K.
,
2023
, “
Physics Informed Synthetic Image Generation for Deep Learning-Based Detection of Wrinkles and Folds
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
3
), p.
030903
.
26.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.
27.
Singh
,
S. K.
,
Yang
,
R.
,
Behjat
,
A.
,
Rai
,
R.
,
Chowdhury
,
S.
, and
Matei
,
I.
,
2019
, “
PI-LSTM: Physics-Infused Long Short-Term Memory Network
,”
2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)
,
Boca Raton, FL
,
Dec. 16–19
,
IEEE
, pp.
34
41
.
28.
Stewart
,
R.
, and
Ermon
,
S.
,
2017
, “
Label-Free Supervision of Neural Networks With Physics and Domain Knowledge
,”
Proceedings of the AAAI Conference on Artificial Intelligence
,
San Francisco, CA
,
Feb. 4–9
, Vol.
31
, pp.
1
7
.
29.
Muralidhar
,
N.
,
Islam
,
M. R.
,
Marwah
,
M.
,
Karpatne
,
A.
, and
Ramakrishnan
,
N.
,
2018
, “
Incorporating Prior Domain Knowledge Into Deep Neural Networks
,”
2018 IEEE International Conference on Big Data
,
Seattle, WA
,
Dec. 10–13
,
IEEE
, pp.
36
45
.
30.
Shen
,
S.
,
Lu
,
H.
,
Sadoughi
,
M.
,
Hu
,
C.
,
Nemani
,
V.
,
Thelen
,
A.
,
Webster
,
K.
,
Darr
,
M.
,
Sidon
,
J.
, and
Kenny
,
S.
,
2021
, “
A Physics-Informed Deep Learning Approach for Bearing Fault Detection
,”
Eng. Appl. Artifi. Intell.
,
103
, p.
104295
.
31.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2022
, “
A Normal Equation-Based Extreme Learning Machine for Solving Linear Partial Differential Equations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014502
.
32.
Noakoasteen
,
O.
,
Wang
,
S.
,
Peng
,
Z.
, and
Christodoulou
,
C.
,
2020
, “
Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis
,”
IEEE Open J. Antennas Propagation
,
1
, pp.
404
412
.
33.
Alhajeri
,
M. S.
,
Abdullah
,
F.
,
Wu
,
Z.
, and
Christofides
,
P. D.
,
2022
, “
Physics-Informed Machine Learning Modeling for Predictive Control Using Noisy Data
,”
Chem. Eng. Res. Des.
,
186
, pp.
34
49
.
34.
Singh
,
S. K.
,
2019
, “
Hybrid Machine Learning Approach for Predictive Modeling of Complex Systems
,” Ph.D. thesis, State University of New York at Buffalo, Getzville, NY.
35.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2020
, “
Solution of Biharmonic Equation in Complicated Geometries With Physics Informed Extreme Learning Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061004
.
36.
Singh
,
S. K.
,“shubhes/navicengine,” https://github.com/shubhes/NavicEngine, Accessed August 18, 2023.
37.
Shi
,
Y.
, and
Reitz
,
R. D.
,
2022
, “
Multi-Dimensional Modelling of Diesel Combustion: A Review
,”
Modelling Diesel Combustion
,
Springer Singapore
,
Singapore
pp.
279
319
.
38.
Wahlström
,
J.
, and
Eriksson
,
L.
,
2011
, “
Modelling Diesel Engines With a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
225
(
7
), pp.
960
986
.
39.
Wolpert
,
D. H.
,
1992
, “
Stacked Generalization
,”
Neural Netw.
,
5
(
2
), pp.
241
259
.
40.
Wang
,
Y.
,
Ren
,
N.
,
Li
,
J.
,
Liu
,
B.
,
Si
,
Q.
, and
Zhang
,
R.
,
2021
, “
Research on Fault Detection and Diagnosis Method of Diesel Engine Air System Based on Deep Learning
,” Data Mining and Big Data: Sixth International Conference, DMBD 2021, Proceedings, Part II 6, Oct. 20–22, pp.
Springer
,
Guangzhou, China
,
328
341
.
41.
Sharma
,
A.
,
Sugumaran
,
V.
, and
Devasenapati
,
S. B.
,
2014
, “
Misfire Detection in an Ic Engine Using Vibration Signal and Decision Tree Algorithms
,”
Measurement
,
50
, pp.
370
380
.
42.
Rogov
,
O.
,
2022
, “
Fault Detection in Diesel Engines Using Deep Learning and Qarma Algorithms
,” Master’s thesis, Lahti University of Technology LUT, Lappeenranta.
You do not currently have access to this content.