Abstract

In the realm of large format additive manufacturing (LFAM), determining an effective printing strategy before actual printing involves predicting temperature behaviors and controlling layer time, which has consistently been challenging. Currently, temperature prediction for controlling layer time in LFAM is primarily conducted through offline simulations or online monitoring. However, these approaches are typically tailored to specific cases and lack generalizability. Consequently, there exists a significant gap in the development of a universal model that can leverage historical data to predict temperature across various new geometries and positions. In this article, a novel approach to optimize printing strategies for LFAM is proposed through the development and application of a transformer-based model focused on the dynamic prediction and management of temperature profiles across the print surface. Subsequently, the authors input the predicted temperature into an optimization model to determine the optimal layer time. A series of experiments were conducted to validate the effectiveness of the proposed model. Using historical temperature data collected from the real printing processes, the model demonstrated a high degree of accuracy in predicting temperature profiles for new design, enabling the optimization of layer time settings far beyond the capabilities of traditional fixed-time methods. This process significantly enhances the printing strategy, thereby increasing both the efficiency of the printing process and the quality of the printed objects.

References

1.
Wang
,
F.
,
Fathizadan
,
S.
,
Ju
,
F.
,
Rowe
,
K.
, and
Hofmann
,
N.
,
2020
, “
Print Surface Thermal Modeling and Layer Time Control for Large-Scale Additive Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
1
), pp.
244
254
.
2.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Comp. Part B: Eng.
,
143
(
1
), pp.
172
196
.
3.
Brenken
,
B.
,
Barocio
,
E.
,
Favaloro
,
A.
,
Kunc
,
V.
, and
Pipes
,
R. B.
,
2018
, “
Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review
,”
Addit. Manuf.
,
21
(
1
), pp.
1
16
.
4.
Thermwood
,
2019
, “
Large Scale Additive Manufacturing
,” Website Resource.
5.
Thermwood
,
2024
, “
An All New Technology for Large Scale 3D Printing of Thermoplastic Polymers
,” http://www.thermwood.com/lsam_home.htm, Accessed April 20, 2024.
6.
Vicente
,
C. M.
,
Sardinha
,
M.
,
Reis
,
L.
,
Ribeiro
,
A.
, and
Leite
,
M.
,
2023
, “
Large-Format Additive Manufacturing of Polymer Extrusion-Based Deposition Systems: Review and Applications
,”
Progr. Addit. Manuf.
,
8
(
6
), pp.
1257
1280
.
7.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid. Prototyp. J.
,
23
(
1
), pp.
181
189
.
8.
Sun
,
Q.
,
Rizvi
,
G.
,
Bellehumeur
,
C.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid. Prototyp. J.
,
14
(
2
), pp.
72
80
.
9.
Compton
,
B. G.
,
Post
,
B. K.
,
Duty
,
C. E.
,
Love
,
L.
, and
Kunc
,
V.
,
2017
, “
Thermal Analysis of Additive Manufacturing of Large-Scale Thermoplastic Polymer Composites
,”
Addit. Manuf.
,
17
(
1
), pp.
77
86
.
10.
Fathizadan
,
S.
,
Ju
,
F.
,
Rowe
,
K.
,
Fiechter
,
A.
, and
Hofmann
,
N.
,
2021
, “
A Novel Real-Time Thermal Analysis and Layer Time Control Framework for Large-Scale Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011009
.
11.
AbouelNour
,
Y.
, and
Gupta
,
N.
,
2022
, “
In-Situ Monitoring of Sub-surface and Internal Defects in Additive Manufacturing: A Review
,”
Mater. Des.
,
222
(Special Issue: Materials & Design Reviews), p.
111063
.
12.
Khoshnevis
,
B.
, and
Dutton
,
R.
,
1998
, “
Innovative Rapid Prototyping Process Makes Large Sized, Smooth Surfaced Complex Shapes in a Wide Variety of Materials
,”
Mater. Technol.
,
13
(
2
), pp.
53
56
.
13.
Mueller
,
B.
,
2012
, “
Additive Manufacturing Technologies–Rapid Prototyping to Direct Digital Manufacturing
,”
Assembly Autom.
,
32
(
2
), p.
101108
.
14.
Edgar
,
J.
, and
Tint
,
S.
,
2015
, “
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
,”
Johnson Matthey Technol. Rev.
,
59
(
3
), pp.
193
198
.
15.
Dilberoglu
,
U. M.
,
Gharehpapagh
,
B.
,
Yaman
,
U.
, and
Dolen
,
M.
,
2017
, “
The Role of Additive Manufacturing in the Era of Industry 4.0
,”
Proced. Manuf.
,
11
(Special Issue on FAIM2017), pp.
545
554
.
16.
Love
,
L. J.
,
2015
,
Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles
,
Oak Ridge National Lab. (ORNL)
,
Oak Ridge, TN
.
17.
Talagani
,
M.
,
DorMohammadi
,
S.
,
Dutton
,
R.
,
Godines
,
C.
,
Baid
,
H.
,
Abdi
,
F.
, and
Kunc
,
V.
, et al.,
2015
, “
Numerical Simulation of Big Area Additive Manufacturing (3D Printing) of a Full Size Car
,”
SAMPE J.
,
51
(
4
), pp.
27
36
.
18.
Kunc
,
V.
,
Hassen
,
A. A.
,
Lindahl
,
J.
,
Kim
,
S.
,
Post
,
B.
, and
Love
,
L.
,
2017
, “
Large Scale Additively Manufactured Tooling for Composites
,”
15th Japan International SAMPE Exhibition
,
Tokyo, Japan
,
Nov. 27–29
.
19.
Romberg
,
S.
,
Hershey
,
C.
,
Lindahl
,
J.
,
Carter
,
W.
,
Compton
,
B. G.
, and
Kunc
,
V.
,
2019
,
Large-Scale Additive Manufacturing of Highly Exothermic Reactive Polymer Systems
,
Oak Ridge National Lab (ORNL)
,
Oak Ridge, TN
.
20.
Wang
,
F.
,
Ju
,
F.
,
Rowe
,
K.
, and
Hofmann
,
N.
,
2019
, “
Real-Time Control for Large Scale Additive Manufacturing Using Thermal Images
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE))
,
Vancouver, BC, Canada
,
Aug. 22–26
, pp.
36
41
.
21.
Liu
,
L.
,
Jo
,
E.
,
Vaidya
,
U.
,
Kim
,
S.
, and
Ju
,
F.
,
2023
, “
An Integrated Offline and Online Optimization Framework for Large Scale Additive Manufacturing
,”
2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)
,
Auckland, New Zealand
,
Aug. 26–30
, IEEE, pp.
1
6
.
22.
Liu
,
L.
,
Jo
,
E.
,
Hoskins
,
D.
,
Vaidya
,
U.
,
Ozcan
,
S.
,
Ju
,
F.
, and
Kim
,
S.
,
2023
, “
Layer Time Optimization in Large Scale Additive Manufacturing Via a Reduced Physics-Based Model
,”
Addit. Manuf.
,
72
(
1
), p.
103597
.
23.
Fathizadan
,
S.
,
Ju
,
F.
,
Wang
,
F.
,
Rowe
,
K.
, and
Hofmann
,
N.
,
2022
, “
Dynamic Material Deposition Control for Large-Scale Additive Manufacturing
,”
IISE Trans.
,
54
(
9
), pp.
817
831
.
24.
Guo
,
S.
,
Dai
,
R.
,
Sun
,
H.
, and
Nian
,
Q.
,
2023
, “
pTS-LSTM: Temperature Prediction for Fused Filament Fabrication Using Thermal Image Time Series
,”
J. Manuf. Process.
,
106
(
1
), pp.
316
327
.
25.
Ying
,
W.
,
Wang
,
D.
,
Chen
,
H.
, and
Fu
,
Y.
,
2024
, “
Feature Selection as Deep Sequential Generative Learning
,”
ACM Trans. Knowl. Disc. Data
,
18
(
9
), pp.
1
21
.
26.
Hu
,
X.
,
Fan
,
W.
,
Wang
,
D.
,
Wang
,
P.
,
Li
,
Y.
, and
Fu
,
Y.
,
2024
, “
Dual-Stage Flows-Based Generative Modeling for Traceable Urban Planning
,”
SIAM International Conference on Data Mining (SDM24)
,
Houston, TX
,
Apr. 18–20
, pp.
370
378
.
27.
Wang
,
X.
,
Wu
,
L.
,
Hong
,
L.
,
Liu
,
H.
, and
Fu
,
Y.
,
2024
, “
LLM-Enhanced User-Item Interactions: Leveraging Edge Information for Optimized Recommendations
,”
arXiv:cs.AI
.
28.
Gong
,
N.
,
Ying
,
W.
,
Wang
,
D.
, and
Fu
,
Y.
,
2024
, “
Neuro-Symbolic Embedding for Short and Effective Feature Selection via Autoregressive Generation
,”
ACM Trans. Intell. Syst. Technol
.
29.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
Ł.
, and
Polosukhin
,
I.
, “
Attention Is All You Need
,”
2017 Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
.
30.
Fernandez-Zelaia
,
P.
,
Dryepondt
,
S. N.
,
Ziabari
,
A. K.
, and
Kirka
,
M. M.
,
2024
, “
Self-Supervised Learning of Spatiotemporal Thermal Signatures in Additive Manufacturing Using Reduced Order Physics Models and Transformers
,”
Comput. Mater. Sci.
,
232
(
1
), p.
112603
.
31.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 27–30
, pp.
779
788
.
32.
Ba
,
J. L.
,
Kiros
,
J. R.
, and
Hinton
,
G. E.
,
2016
, “
Layer Normalization
,”
2016 Conference on Neural Information Processing Systems
,
Barcelona, Spain
,
Dec. 5–10
.
You do not currently have access to this content.