Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Accurately estimating the state of charge (SOC) of batteries is crucial for the objective of extending battery life and enhancing power supply reliability. Currently, machine learning methods are commonly used to predict the SOC of batteries, however, their accuracy in capturing the sequential nature of battery charging and discharging is insufficient. To address the problem of the SOC prediction, a deep learning model that employs long short-term memory (LSTM) with Attention mechanism is proposed. The LSTM model is designed to connect the current SOC with historical time data and to extract multidimensional features from groups of batteries. Additionally, introducing the Attention mechanism allows for the model to prioritize key information while disregarding insignificant data. This work utilizes two different approaches to the multi-cell case and the single-cell case for several reasons. Considering that the failure of a single cell can affect the entire group of batteries, the SOC prediction models for individual batteries need not take a long training time. Thus, the LightGBM model is developed to predict the SOC of a single battery whose training speed surpasses that of the deep learning model and has superior prediction accuracy and greater speed when employed with small-scale data, error within 3%. Conversely, the LSTM-Attention model yields higher prediction accuracy when processing large-scale datasets, error within 5%. Two models are proposed: one for predicting the SOC of groups of batteries and another for a single battery.

References

1.
Hiete
,
M.
,
Merz
,
M.
, and
Schultmann
,
F.
,
2011
, “
Scenario-Based Impact Analysis of a Power Outage on Healthcare Facilities in Germany
,”
Int. J. Disaster Resilience Built Environ.
,
2
(
3
), pp.
222
244
.
2.
Yang
,
J.
,
Chen
,
H.
,
Hao
,
W.
,
Kai
,
Y.
,
Jing
,
B.
, and
Hui
,
Y.
,
2017
, “
Review on the Research of Failure Modes and Mechanism for Lead–Acid Batteries
,”
Int. J. Energy Res.
,
41
(
3
), pp.
336
352
.
3.
Shang
,
Y.
,
Zhao
,
S.
,
Fu
,
Y.
,
Han
,
B.
,
Hu
,
P.
, and
Mi
,
C. C.
,
2020
, “
A Lithium-Ion Battery Balancing Circuit Based on Synchronous Rectification
,”
IEEE Trans. Power Electron.
,
35
(
2
), pp.
1637
1648
.
4.
Hou
,
J.
,
Li
,
T.
,
Zhou
,
F.
,
Zhao
,
D.
,
Zhong
,
Y.
,
Yao
,
L.
, and
Zeng
,
L.
,
2022
, “
A Review of Critical State Joint Estimation Methods of Lithium-Ion Batteries in Electric Vehicles
,”
World Electric Vehicle J.
,
13
(
9
), p.
159
.
5.
Wang
,
Y.
,
Tian
,
J.
,
Sun
,
Z.
,
Wang
,
L.
, and
Chen
,
Z.
,
2020
, “
A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems
,”
Renew. Sustain. Energy Rev.
,
131
, p.
110015
.
6.
Hu
,
X.
, and
Tang
,
X.
,
2017
, “
Review of Modeling Techniques for Lithium-Ion Traction Batteries in Electric Vehicles
,”
J. Mech. Eng.
,
53
(
16
), pp.
20
31
.
7.
Pillai
,
P.
,
Sundaresan
,
S.
,
Kumar
,
P.
,
Pattipati
,
K. R.
, and
Balasingam
,
B.
,
2022
, “
Open-Circuit Voltage Models for Battery Management Systems: A Review
,”
Energies
,
15
(
18
), p.
6803
.
8.
Mushtaq
,
S.
,
Islam
,
M. M. M.
, and
Sohaib
,
M.
,
2021
, “
Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review
,”
Energies
,
14
(
16
), p.
5150
.
9.
Shi
,
J.
,
Wei
,
Y.
, and
Wu
,
D.
,
2023
, “
Data-Driven Online Prediction of Discharge Capacity and End-of-Discharge of Lithium-Ion Battery
,”
ASME J. Comput. Inf. Sci. Eng.
, pp.
1
14
.
10.
Lu
,
C.
,
Tao
,
L.
, and
Fan
,
H.
,
2014
, “
Li-Ion Battery Capacity Estimation: A Geometrical Approach
,”
J. Power Sources
,
261
(
2014
), pp.
141
147
.
11.
He
,
H.
,
Xiong
,
R.
, and
Guo
,
H.
,
2012
, “
Online Estimation of Model Parameters and State-of-Charge of LifePO4 Batteries in Electric Vehicles
,”
Appl. Energy
,
89
(
1
), pp.
413
420
.
12.
Liu
,
C.
,
Liu
,
W.
,
Wang
,
L.
,
Hu
,
G.
,
Ma
,
L.
, and
Ren
,
B.
,
2016
, “
A New Method of Modeling and State of Charge Estimation of the Battery
,”
J. Power Sources
,
320
, pp.
1
12
.
13.
Schweiger
,
H. G.
,
Obeidi
,
O.
,
Komesker
,
O.
,
Raschke
,
A.
, and
Birke
,
P.
,
2010
, “
Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells
,”
Sensors
,
10
(
6
), pp.
5604
5625
.
14.
Galád
,
M.
,
Špánik
,
Pavol
,
Cacciato
,
Mario
, and
Nobile
,
Giovanni
,
2017
, “
Analysis of State of Charge Estimation Methods for Smart Grid With VRLA Batteries
,”
Electr. Eng.
,
99
, pp.
1233
1244
.
15.
Xiong
,
R.
,
Sun
,
F.
,
Chen
,
Z.
, and
He
,
H.
,
2014
, “
A Data-Driven Multi-scale Extended Kalman Filtering Based Parameter and State Estimation Approach of Lithium-Ion Polymer Battery in Electric Vehicles
,”
Appl. Energy
,
113
(
2014
), pp.
463
476
.
16.
Priya
,
R. P.
,
Sanjay
,
R.
, and
Sakile
,
R.
,
2023
, “
State of Charge Estimation of Lithium-Ion Battery Based on Extended Kalman Filter and Unscented Kalman Filter Techniques
,”
Energy Storage
,
5
(
3
), pp.
1
4
.
17.
Peng
,
S.
,
Chen
,
C.
,
Shi
,
H.
, and
Yao
,
Z.
,
2017
, “
State of Charge Estimation of Battery Energy Storage Systems Based on Adaptive Unscented Kalman Filter With a Noise Statistics Estimator
,”
IEEE Access
,
5
, pp.
13202
13212
.
18.
Guo
,
H.
, and
Wang
,
W.
,
2019
, “
Granular Support Vector Machine: A Review
,”
Artif. Intell. Rev.
,
51
(
1
), pp.
19
32
.
19.
Alvarez Anton
,
J. C.
,
Garcia Nieto
,
P. J.
,
Blanco Viejo
,
C.
, and
Vilan Vilan
,
J. A.
,
2013
, “
Support Vector Machines Used to Estimate the Battery State of Charge
,”
IEEE Trans. Power Electron.
,
28
(
12
), pp.
5919
5926
.
20.
Meng
,
J.
,
Cai
,
L.
,
Luo
,
G.
,
Stroe
,
D.-I.
, and
Teodorescu
,
R.
,
2018
, “
Lithium-Ion Battery State of Health Estimation With Short-Term Current Pulse Test and Support Vector Machine
,”
Microelectron. Reliab.
,
88
(
2018
), pp.
1216
1220
.
21.
Scott
,
D.
,
Lu
,
J.
,
Aburub
,
H.
,
Sundararajan
,
A.
, and
Sarwat
,
A. I.
,
2017
, “
An Intelligence-Based State of Charge Prediction for VRLA Batteries
,”
IEEE Transportation Electrification Conference
,
Pune, India
,
Dec. 13–15
, pp.
1
4
.
22.
Zhang
,
G.
,
Xia
,
B.
, and
Wang
,
J.
,
2021
, “
Intelligent State of Charge Estimation of Lithium-Ion Batteries Based on L-M Optimized Back-Propagation Neural Network
,”
J. Energy Storage
,
44
, p.
103442
.
23.
Lin
,
J.
,
Yang
,
X.
,
Zhou
,
J.
,
Wang
,
G.
,
Liu
,
J.
, and
Yuan
,
Y.
,
2023
, “
Algorithm of BPNN-UKF Based on a Fusion Model for SOC Estimation in Lithium-Ion Batteries
,”
IET Power Electron.
,
16
(
5
), pp.
856
867
.
24.
Singh
,
M.
,
Bansal
,
S.
,
Vandana
,
Panigrahi
,
B. K.
, and
Garg
,
A.
,
2022
, “
A Genetic Algorithm and RNN-LSTM Model for Remaining Battery Capacity Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041009
.
25.
Lyu
,
C.
,
Lai
,
Q.
,
Ge
,
T.
,
Yu
,
H.
,
Wang
,
L.
, and
Ma
,
N.
,
2017
, “
A Lead-Acid Battery’s Remaining Useful Life Prediction by Using Electrochemical Model in the Particle Filtering, Framework
,”
Energy
,
120
, pp.
975
984
.
26.
Zahid
,
T.
,
Xu
,
K.
,
Li
,
W.
,
Li
,
C.
, and
Li
,
H.
,
2018
, “
State of Charge Estimation for Electric Vehicle Power Battery Using Advanced Machine Learning Algorithm Under Diversified Drive Cycles
,”
Energy
,
162
, pp.
871
882
.
27.
Selvabharathi
,
D.
, and
Muruganantham
,
N.
,
2022
, “
Estimating the State of Health of Lead-Acid Battery Using Feed-Forward Neural Network
,”
J. Circuits Syst. Comput.
,
31
(
05
), p.
2250081
.
28.
Li
,
Z.
,
Huang
,
J.
,
Liaw
,
B. Y.
, and
Zhang
,
J.
,
2017
, “
On State-of-Charge Determination for Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
281
301
.
29.
Ma
,
S.
,
Jiang
,
M.
,
Tao
,
P.
,
Song
,
C.
,
Wu
,
J.
,
Wang
,
J.
,
Deng
,
T.
, and
Shang
,
W.
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Process Natural Sci. Mater. Int.
,
28
(
6
), pp.
653
666
.
30.
Fischer
,
T.
, and
Krauss
,
C.
,
2018
, “
Deep Learning With Long Short-Term Memory Networks for Financial Market Predictions
,”
Eur. J. Oper. Res.
,
270
(
2
), pp.
654
669
.
31.
Yu
,
Y.
,
Si
,
X.
,
Hu
,
C.
, and
Zhang
,
J.
,
2019
, “
A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
,”
Neural Comput.
,
31
(
7
), pp.
1235
1270
.
32.
Niu
,
Z.
,
Zhong
,
G.
, and
Yu
,
H.
,
2021
, “
A Review on the Attention Mechanism of Deep Learning
,”
Neurocomputing
,
452
, pp.
48
62
.
33.
Zhang
,
M.
,
Yin
,
J.
, and
Feng
,
T.
,
2017
, “
Analysis of State of Charge Estimation Methods for Smart Grid With VRLA Batteries
,”
Appl. Sci.-Basel
,
13
(
11
), p.
6540
.
34.
Roberto
,
M. M.
,
Karray
,
S.
, and
Tributino de Sousa
,
I.
,
2019
, “
LightGBM: A Highly Efficient Gradient Boosting Decision Tree
,”
14th International Conference on Computer Science
,
Toronto, ON, Canada
,
August
.
35.
Tang
,
M.
,
Zhao
,
Q.
,
Ding
,
S. X.
,
Wu
,
H.
,
Li
,
L.
,
Long
,
W.
, and
Huang
,
B.
,
2020
, “
An Improved Lightgbm Algorithm for Online Fault Detection of Wind Turbine Gearboxes
,”
Energies
,
13
(
4
), p.
807
.
36.
Chen
,
J.
,
Li
,
K.
,
Rong
,
H.
,
Bilal
,
K.
,
Li
,
K.
, and
Yu
,
P. S.
,
2019
, “
A Periodicity-Based Parallel Time Series Prediction Algorithm in Cloud Computing Environments
,”
Inf. Sci.
,
496
, pp.
506
537
.
You do not currently have access to this content.