Abstract

As Industry 4.0 and digitization continue to advance, the reliance on information technology increases, making the world more vulnerable to cyberattacks, especially cyber-physical attacks that can manipulate physical systems and compromise sensor data integrity. Detecting cyberattacks in multistage manufacturing systems (MMS) is crucial due to the growing sophistication of attacks and the complexity of MMS. Attacks can propagate throughout the system, affecting subsequent stages and making detection more challenging than in single-stage systems. Localization is also critical due to the complex interactions in MMS. To address these challenges, a group lasso regression-based framework is proposed to detect and localize attacks in MMS. The proposed algorithm outperforms traditional hypothesis testing-based methods in expected detection delay and localization accuracy, as demonstrated in a simple linear multistage manufacturing system.

References

1.
Mahoney
,
T. C.
, and
Davis
,
J.
,
2017
, “
Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory
,” Technical Report.
2.
Langner
,
R.
,
2011
, “
Stuxnet: Dissecting a Cyberwarfare Weapon
,”
IEEE Secur. Priv.
,
9
(
3
), pp.
49
51
.
3.
Wu
,
M.
,
2019
, “
Intrusion Detection for Cyber-Physical Attacks in Cyber-Manufacturing System
,” Doctoral Dissertation,
Syracuse University, New York
.
4.
Lee
,
R. M.
,
Assante
,
M. J.
, and
Conway
,
T.
,
2014
, “
German Steel Mill Cyber Attack
,”
Ind. Contr. Syst.
,
30
(
62
), pp.
1
15
.
5.
Abbaspour
,
A.
,
Sargolzaei
,
A.
,
Forouzannezhad
,
P.
,
Yen
,
K. K.
, and
Sarwat
,
A. I.
,
2019
, “
Resilient Control Design for Load Frequency Control System Under False Data Injection Attacks
,”
IEEE Trans. Ind. Electron.
,
67
(
9
), pp.
7951
7962
.
6.
Lu
,
Y.
, and
Xu
,
X.
,
2019
, “
Cloud-Based Manufacturing Equipment and Big Data Analytics to Enable On-Demand Manufacturing Services
,”
Rob. Comput. Integr. Manuf.
,
57
, pp.
92
102
.
7.
Zhong
,
R. Y.
,
Newman
,
S. T.
,
Huang
,
G. Q.
, and
Lan
,
S.
,
2016
, “
Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives
,”
Comput. Ind. Eng.
,
101
, pp.
572
591
.
8.
Liu
,
T.
,
Yang
,
B.
,
Li
,
Q.
,
Ye
,
J.
,
Song
,
W.
, and
Liu
,
P.
,
2021
, “
Cyber-Physical Taint Analysis in Multi-stage Manufacturing Systems (MMS): A Case Study
,”
arXiv preprint
. https://arxiv.org/abs/2109.12774
9.
Shi
,
J.
,
2006
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press
,
Boca Raton, FL
.
10.
Al Mamun
,
A.
,
Liu
,
C.
,
Kan
,
C.
, and
Tian
,
W.
,
2022
, “
Securing Cyber-Physical Additive Manufacturing Systems by In-Situ Process Authentication Using Streamline Video Analysis
,”
J. Manuf. Syst.
,
62
, pp.
429
440
.
11.
Shi
,
Z.
,
Mamun
,
A. A.
,
Kan
,
C.
,
Tian
,
W.
, and
Liu
,
C.
,
2022
, “
An LSTM-Autoencoder Based Online Side Channel Monitoring Approach for Cyber-Physical Attack Detection in Additive Manufacturing
,”
J. Intell. Manuf.
,
34
, pp.
1815
1831
.
12.
Zeltmann
,
S. E.
,
Gupta
,
N.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Rajendran
,
J.
, and
Karri
,
R.
,
2016
, “
Manufacturing and Security Challenges in 3D Printing
,”
JOM
,
68
(
7
), pp.
1872
1881
.
13.
Liu
,
C.
,
Kan
,
C.
, and
Tian
,
W.
,
2020
, “
An Online Side Channel Monitoring Approach for Cyber-Physical Attack Detection of Additive Manufacturing
,”
International Manufacturing Science and Engineering Conference
, Vol.
84263
,
American Society of Mechanical Engineers
, p.
V002T07A016
.
14.
Liu
,
Y.
,
Ning
,
P.
, and
Reiter
,
M. K.
,
2011
, “
False Data Injection Attacks Against State Estimation in Electric Power Grids
,”
ACM Trans. Inf. Syst. Security (TISSEC)
,
14
(
1
), pp.
1
33
.
15.
Northern
,
B.
,
Burks
,
T.
,
Hatcher
,
M.
,
Rogers
,
M.
, and
Ulybyshev
,
D.
,
2021
, “
VERCASM-CPS: Vulnerability Analysis and Cyber Risk Assessment for Cyber-Physical Systems
,”
Information
,
12
(
10
), p.
408
.
16.
Zhang
,
Y.
,
Jiang
,
T.
,
Shi
,
Q.
,
Liu
,
W.
, and
Huang
,
S.
,
2022
, “
Modeling and Vulnerability Assessment of Cyber Physical System Considering Coupling Characteristics
,”
Int. J. Electr. Power Energy Syst.
,
142
, p.
108321
.
17.
Pan
,
H.
,
Lian
,
H.
,
Na
,
C.
, and
Li
,
X.
,
2020
, “
Modeling and Vulnerability Analysis of Cyber-Physical Power Systems Based on Community Theory
,”
IEEE Syst. J.
,
14
(
3
), pp.
3938
3948
.
18.
Pivoto
,
D. G.
,
de Almeida
,
L. F.
,
da Rosa Righi
,
R.
,
Rodrigues
,
J. J.
,
Lugli
,
A. B.
, and
Alberti
,
A. M.
,
2021
, “
Cyber-Physical Systems Architectures for Industrial Internet of Things Applications in Industry 4.0: A Literature Review
,”
J. Manuf. Syst.
,
58
, pp.
176
192
.
19.
Patan
,
R.
,
Ghantasala
,
G. P.
,
Sekaran
,
R.
,
Gupta
,
D.
, and
Ramachandran
,
M.
,
2020
, “
Smart Healthcare and Quality of Service in IoT Using Grey Filter Convolutional Based Cyber Physical System
,”
Sustain. Cities Soc.
,
59
, p.
102141
.
20.
Thakur
,
S.
,
Chakraborty
,
A.
,
De
,
R.
,
Kumar
,
N.
, and
Sarkar
,
R.
,
2021
, “
Intrusion Detection in Cyber-Physical Systems Using a Generic and Domain Specific Deep Autoencoder Model
,”
Comput. Electr. Eng.
,
91
, p.
107044
.
21.
Althobaiti
,
M. M.
,
Kumar
,
K. P. M.
,
Gupta
,
D.
,
Kumar
,
S.
, and
Mansour
,
R. F.
,
2021
, “
An Intelligent Cognitive Computing Based Intrusion Detection for Industrial Cyber-Physical Systems
,”
Measurement
,
186
, p.
110145
.
22.
Kazemi
,
Z.
,
Safavi
,
A. A.
,
Arefi
,
M. M.
, and
Naseri
,
F.
,
2021
, “
Finite-Time Secure Dynamic State Estimation for Cyber-Physical Systems Under Unknown Inputs and Sensor Attacks
,”
IEEE Trans. Syst. Man. Cybernet.: Syst.
,
52
(
8
), pp.
4950
4959
.
23.
Ding
,
D.
,
Han
,
Q.-L.
,
Ge
,
X.
, and
Wang
,
J.
,
2020
, “
Secure State Estimation and Control of Cyber-Physical Systems: A Survey
,”
IEEE Trans. Syst. Man. Cybernet.: Syst.
,
51
(
1
), pp.
176
190
.
24.
Zhao
,
Y.
,
Du
,
X.
,
Zhou
,
C.
, and
Tian
,
Y.-C.
,
2022
, “
Anti-Saturation Resilient Control of Cyber-Physical Systems Under Actuator Attacks
,”
Inf. Sci.
,
608
, pp.
1245
1260
.
25.
Liao
,
H.-J.
,
Lin
,
C.-H. R.
,
Lin
,
Y.-C.
, and
Tung
,
K.-Y.
,
2013
, “
Intrusion Detection System: A Comprehensive Review
,”
J. Netw. Comput. Appl.
,
36
(
1
), pp.
16
24
.
26.
Yaacoub
,
J.-P. A.
,
Salman
,
O.
,
Noura
,
H. N.
,
Kaaniche
,
N.
,
Chehab
,
A.
, and
Malli
,
M.
,
2020
, “
Cyber-Physical Systems Security: Limitations, Issues and Future Trends
,”
Microprocess. Microsyst.
,
77
, p.
103201
.
27.
Li
,
D.
,
Gebraeel
,
N. Z.
,
Paynabar
,
K.
, and
Meliopoulos
,
A. S.
,
2022
, “
An Online Approach to Covert Attack Detection and Indentification in Power Systems
,”
IEEE Trans. Power Syst.
,
38
(
1
), pp.
267
277
.
28.
Panigrahi
,
R.
,
Borah
,
S.
,
Pramanik
,
M.
,
Bhoi
,
A. K.
,
Barsocchi
,
P.
,
Nayak
,
S. R.
, and
Alnumay
,
W.
,
2022
, “
Intrusion Detection in Cyber-Physical Environment Using Hybrid Naïve Bayes–Decision Table and Multi-objective Evolutionary Feature Selection
,”
Comput. Commun.
,
188
, pp.
133
144
.
29.
Kwon
,
H.-Y.
,
Kim
,
T.
, and
Lee
,
M.-K.
,
2022
, “
Advanced Intrusion Detection Combining Signature-Based and Behavior-Based Detection Methods
,”
Electronics
,
11
(
6
), p.
867
.
30.
Song
,
J.
,
Bandaru
,
H.
,
He
,
X.
,
Qiu
,
Z.
, and
Moon
,
Y. B.
,
2020
, “
Layered Image Collection for Real-Time Defective Inspection in Additive Manufacturing
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
84492
,
American Society of Mechanical Engineers
, p.
V02BT02A006
.
31.
Wu
,
M.
,
Phoha
,
V. V.
,
Moon
,
Y. B.
, and
Belman
,
A. K.
,
2016
, “
Detecting Malicious Defects in 3D Printing Process Using Machine Learning and Image Classification
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
50688
,
American Society of Mechanical Engineers
, p.
V014T07A004
.
32.
Li
,
D.
,
Paynabar
,
K.
, and
Gebraeel
,
N.
,
2021
, “
A Degradation-Based Detection Framework Against Covert Cyberattacks on Scada Systems
,”
IISE Trans.
,
53
(
7
), pp.
812
829
.
33.
Li
,
D.
,
Ramanan
,
P.
,
Gebraeel
,
N.
, and
Paynabar
,
K.
,
2020
, “
Deep Learning Based Covert Attack Identification for Industrial Control Systems
,”
2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)
,
Miami, FL
,
Dec. 14–17
, IEEE, pp.
438
445
.
34.
Song
,
J.
,
Shukla
,
D.
,
Wu
,
M.
,
Phoha
,
V. V.
, and
Moon
,
Y. B.
,
2019
, “
Physical Data Auditing for Attack Detection in Cyber-Manufacturing Systems: Blockchain for Machine Learning Process
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
59384
,
American Society of Mechanical Engineers
, p.
V02BT02A004
.
35.
Wu
,
M.
,
Song
,
Z.
, and
Moon
,
Y. B.
,
2019
, “
Detecting Cyber-Physical Attacks in Cybermanufacturing Systems With Machine Learning Methods
,”
J. Intell. Manuf.
,
30
(
3
), pp.
1111
1123
.
36.
Bhardwaj
,
A.
,
Al-Turjman
,
F.
,
Kumar
,
M.
,
Stephan
,
T.
, and
Mostarda
,
L.
,
2020
, “
Capturing-The-Invisible (CTI): Behavior-Based Attacks Recognition in IoT-Oriented Industrial Control Systems
,”
IEEE Access
,
8
, pp.
104956
104966
.
37.
Qian
,
J.
,
Du
,
X.
,
Chen
,
B.
,
Qu
,
B.
,
Zeng
,
K.
, and
Liu
,
J.
,
2020
, “
Cyber-Physical Integrated Intrusion Detection Scheme in Scada System of Process Manufacturing Industry
,”
IEEE Access
,
8
, pp.
147471
147481
.
38.
Abokifa
,
A. A.
,
Haddad
,
K.
,
Lo
,
C.
, and
Biswas
,
P.
,
2019
, “
Real-Time Identification of Cyber-Physical Attacks on Water Distribution Systems Via Machine Learning–Based Anomaly Detection Techniques
,”
J. Water Resour. Plann. Manag.
,
145
(
1
), p.
04018089
.
39.
Urbina
,
D. I.
,
Giraldo
,
J. A.
,
Cardenas
,
A. A.
,
Tippenhauer
,
N. O.
,
Valente
,
J.
,
Faisal
,
M.
,
Ruths
,
J.
,
Candell
,
R.
, and
Sandberg
,
H.
,
2016
, “
Limiting the Impact of Stealthy Attacks on Industrial Control Systems
,”
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
,
Vienna Austria
,
Oct. 24–28
, pp.
1092
1105
.
40.
Li
,
D.
,
Gebraeel
,
N.
, and
Paynabar
,
K.
,
2020
, “
Detection and Differentiation of Replay Attack and Equipment Faults in Scada Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
4
), pp.
1626
1639
.
41.
Mo
,
Y.
,
Chabukswar
,
R.
, and
Sinopoli
,
B.
,
2013
, “
Detecting Integrity Attacks on Scada Systems
,”
IEEE Trans. Contr. Syst. Technol.
,
22
(
4
), pp.
1396
1407
.
42.
Van Long
,
D.
,
Fillatre
,
L.
, and
Nikiforov
,
I.
,
2015
, “
Sequential Monitoring of Scada Systems Against Cyber/physical Attacks
,”
IFAC-PapersOnLine
,
48
(
21
), pp.
746
753
.
43.
Mo
,
Y.
, and
Sinopoli
,
B.
,
2009
, “
Secure Control Against Replay Attacks
,”
2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
,
Monticello, IL
,
Sept. 30–Oct. 2
, IEEE, pp.
911
918
.
44.
Li
,
B.
,
Xiao
,
G.
,
Lu
,
R.
,
Deng
,
R.
, and
Bao
,
H.
,
2019
, “
On Feasibility and Limitations of Detecting False Data Injection Attacks on Power Grid State Estimation Using D-Facts Devices
,”
IEEE Trans. Ind. Inf.
,
16
(
2
), pp.
854
864
.
45.
Wang
,
Q.
,
Tai
,
W.
,
Tang
,
Y.
, and
Ni
,
M.
,
2019
, “
Review of the False Data Injection Attack Against the Cyber-Physical Power System
,”
IET Cyber-Phys. Syst.: Theory Appl.
,
4
(
2
), pp.
101
107
.
46.
Jorjani
,
M.
,
Seifi
,
H.
, and
Varjani
,
A. Y.
,
2020
, “
A Graph Theory-Based Approach to Detect False Data Injection Attacks in Power System AC State Estimation
,”
IEEE Trans. Ind. Inf.
,
17
(
4
), pp.
2465
2475
.
47.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2002
, “
Design Evaluation of Multi-station Assembly Processes by Using State Space Approach
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
408
418
.
You do not currently have access to this content.