Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Digital twin (DT) technology has received immense attention over the years due to the promises it presents to various stakeholders in science and engineering. As a result, different thematic areas of DT have been explored. This is no different in specific fields such as manufacturing, automation, oil and gas, and civil engineering, leading to fragmented approaches for field-specific applications. The civil engineering industry is further disadvantaged in this regard as it relies on external techniques by other engineering fields for its DT adoption. A rising consequence of these extensions is a concentrated application of DT to the operations and maintenance phase. On another spectrum, building information modeling (BIM) is pervasively utilized in the planning/design phase, and the transient nature of the construction phase remains a challenge for its DT adoption. In this article, we present a phase-based development of DT in the architecture, engineering, and construction industry. We commence by presenting succinct expositions on DT as a concept and as a service, and establish a five-level scale system. Furthermore, we present separately a systematic literature review of the conventional techniques employed at each civil engineering phase. In this regard, we identified enabling technologies such as computer vision for extended sensing and the Internet of things for reliable integration. Ultimately, we attempt to reveal DT as an important tool across the entire life cycle of civil engineering projects, and nudge researchers to think more holistically in their quest for the integration of DT for civil engineering applications.

References

1.
Tao
,
F.
, and
Zhang
,
M.
,
2017
, “
Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing
,”
IEEE Access
,
5
, pp.
20418
20427
.
2.
Liu
,
Q.
,
Liu
,
B.
,
Wang
,
G.
, and
Zhang
,
C.
, “
A Comparative Study on Digital Twin Models
,”
Advances in Materials, Machinery, Electronics III
,
Wuhan, China
,
Jan. 19–20
.
3.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360deg Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
.
4.
Guo
,
F.
,
Zou
,
F.
,
Liu
,
J.
, and
Wang
,
Z.
,
2018
, “
Working Mode in Aircraft Manufacturing Based on Digital Coordination Model
,”
Int. J. Adv. Manuf. Technol.
,
98
, pp.
1547
1571
.
5.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Inter. J. Aeros. Eng.
,
2011
(
1
), p.
154798
.
6.
Cameron
,
D. B.
,
Waaler
,
A.
, and
Komulainen
,
T. M.
,
2018
, “
Oil and Gas Digital Twins After Twenty Years. How Can They Be Made Sustainable, Maintainable and Useful?
Proceedings of The 59th Conference on Simulation and Modelling (SIMS 59)
,
Oslo Metropolitan University, Norway
,
Sept. 26–28
, pp.
15
24
.
7.
Zhang
,
R.
,
Wingo
,
P.
,
Duran
,
R.
,
Rose
,
K.
,
Bauer
,
J.
, and
Ghanem
,
R.
,
2020
, “Environmental Economics and Uncertainty: Review and a Machine Learning Outlook”
Oxford Research Encyclopedia of Environmental Science
,
Oxford University Press
,
Oxford, UK
.
8.
Pan
,
Y.
, and
Zhang
,
L.
,
2021
, “
A BIM-Data Mining Integrated Digital Twin Framework for Advanced Project Management
,”
Auto. Const.
,
124
, p.
103564
.
9.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Indus. Inform.
,
15
(
4
), pp.
2405
2415
.
10.
Enzer
,
M.
,
Bolton
,
A.
,
Boulton
,
C.
,
Byles
,
D.
,
Cook
,
A.
,
Dobbs
,
L.
,
El Hajj
,
P. A.
,
Keaney
,
E.
,
Kemp
,
A.
,
Makri
,
C.
, and
Mistry
,
S.
,
2019
, “
Roadmap for Delivering the Information Management Framework for the Built Environment
,” Centre for Digital Built Britain, https://www.repository.cam.ac.uk/bitstreams/fb880d2c-ef02-45da-8abe-3b61e1127c76/download, Accessed August 16, 2024.
11.
Lamb
,
K.
,
2019
, “
Principle-Based Digital Twins: A Scoping Review
,” University of Cambridge, Cambridge, UK, https://www.cdbb.cam.ac.uk/news/principle-based-digital-twins-scoping-review, Accessed August 16, 2024.
12.
Angjeliu
,
G.
,
Coronelli
,
D.
, and
Cardani
,
G.
,
2020
, “
Development of the Simulation Model for Digital Twin Applications in Historical Masonry Buildings: The Integration Between Numerical and Experimental Reality
,”
Comput. Struct.
,
238
, p.
106282
.
13.
Pregnolato
,
M.
,
Gunner
,
S.
,
Voyagaki
,
E.
,
De Risi
,
R.
,
Carhart
,
N.
,
Gavriel
,
G.
,
Tully
,
P.
,
Tryfonas
,
T.
,
Macdonald
,
J.
, and
Taylor
,
C.
,
2022
, “
Towards Civil Engineering 4.0: Concept, Workflow and Application of Digital Twins for Existing Infrastructure
,”
Auto. Const.
,
141
, p.
104421
.
14.
Torzoni
,
M.
,
Tezzele
,
M.
,
Mariani
,
S.
,
Manzoni
,
A.
, and
Willcox
,
K. E.
,
2024
, “
A Digital Twin Framework for Civil Engineering Structures
,”
Comput. Methods. Appl. Mech. Eng.
,
418
, p.
116584
.
15.
Kapteyn
,
M. G.
,
Pretorius
,
J. V.
, and
Willcox
,
K. E.
,
2021
, “
A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
,”
Nat. Comput. Sci.
,
1
(
5
), pp.
337
347
.
16.
Jones
,
D.
,
Snider
,
C.
,
Nassehi
,
A.
,
Yon
,
J.
, and
Hicks
,
B.
,
2020
, “
Characterising the Digital Twin: A Systematic Literature Review
,”
CIRP. J. Manuf. Sci. Technol.
,
29
, pp.
36
52
.
17.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
.
18.
Wagg
,
D.
,
Worden
,
K.
,
Barthorpe
,
R.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
3
), p.
030901
.
19.
Kritzinger
,
W.
,
Karner
,
M.
,
Traar
,
G.
,
Henjes
,
J.
, and
Sihn
,
W.
,
2018
, “
Digital Twin in Manufacturing: A Categorical Literature Review and Classification
,”
Ifac-PapersOnline
,
51
(
11
), pp.
1016
1022
, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018.
20.
Arup
,
2019
, “
Digital Twin: Towards a Meaningful Framework
,” https://www.arup.com/insights/digital-twin-towards-a-meaningful-framework/, Accessed Feb. 9, 2024.
21.
Jiang
,
F.
,
Ma
,
L.
,
Broyd
,
T.
, and
Chen
,
K.
,
2021
, “
Digital Twin and Its Implementations in the Civil Engineering Sector
,”
Auto. Const.
,
130
, p.
103838
.
22.
AIAA
,
2024
, “
Digital Twin: Definition and Value—An AIAA and AIA Position Paper
,” https://www.aia-aerospace.org/publications/digital-twin-definition-value-an-aiaa-and-aia-position-paper/, Accessed February 9, 2024.
23.
Elfarri
,
E. M.
,
Rasheed
,
A.
, and
San
,
O.
,
2023
, “
Artificial Intelligence-Driven Digital Twin of a Modern House Demonstrated in Virtual Reality
,”
IEEE Access
,
11
, pp.
35035
35058
.
24.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
,
Digital Twin: Mitigating Unpredictable Undesirable Emergent Behavior in Complex Systems
,
Springer International Publishing
,
Cham
, pp.
85
113
.
25.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,” Dassault Systèmes, White Paper, https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication, Accessed August 16, 2024.
26.
IBM
,
2024
, “
What is Digital Twin
,” https://www.ibm.com/topics/what-is-a-digital-twin?mhsrc=ibmsearch_a&mhq=what is digital twin, Accessed February 2, 2024.
27.
Electric
,
G.
,
2024
, “Minds + Machines: Meet a Digital Twin,” https://www.youtube.com/watch?v=2dCz3oL2rTw,” Accessed February 9, 2024.
28.
Siemens
,
2024
, “Digital Twin Technology,” https://www.sw.siemens.com/en-US/technology/digital-twin/, Accessed 9 February 2024.
29.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and US Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, p. 1818.
30.
Qi
,
Q.
,
Tao
,
F.
,
Hu
,
T.
,
Anwer
,
N.
,
Liu
,
A.
,
Wei
,
Y.
,
Wang
,
L.
, and
Nee
,
A.
,
2021
, “
Enabling Technologies and Tools for Digital Twin
,”
J. Manuf. Syst.
,
58
, pp.
3
21
.
31.
Doumbouya
,
L.
,
Gao
,
G.
, and
Guan
,
C.
,
2016
, “
Adoption of the Building Information Modeling (BIM) for Construction Project Effectiveness: The Review of BIM Benefits
,”
Am. J. Civil Eng. Arch.
,
4
(
3
), pp.
74
79
.
32.
Arayici
,
Y.
,
Khosrowshahi
,
F.
,
Ponting
,
A.
, and
Mihindu
,
S.
,
2009
, “
Towards Implementation of Building Information Modelling in the Construction Industry
,” Proceedings of the Fifth International Conference on Construction in the 21st Century (CITC-V), Depositing User : Arayici, Y Themes : Built and Human Environment.
33.
Häkkinen
,
T.
,
Kuittinen
,
M.
,
Ruuska
,
A.
, and
Jung
,
N.
,
2015
, “
Reducing Embodied Carbon During the Design Process of Buildings
,”
J. Build. Eng.
,
4
, pp.
1
13
.
34.
Wong
,
K.-d.
, and
Fan
,
Q.
,
2013
, “
Building Information Modelling (BIM) for Sustainable Building Design
,”
Facilities
,
31
(
3/4
), pp.
138
157
.
35.
Khajavi
,
S. H.
,
Motlagh
,
N. H.
,
Jaribion
,
A.
,
Werner
,
L. C.
, and
Holmström
,
J.
,
2019
, “
Digital Twin: Vision, Benefits, Boundaries, and Creation for Buildings
,”
IEEE Access
,
7
, p.
147406
.
36.
Opoku
,
D.-G. J.
,
Perera
,
S.
,
Osei-Kyei
,
R.
, and
Rashidi
,
M.
,
2021
, “
Digital Twin Application in the Construction Industry: A Literature Review
,”
J. Build. Eng.
,
40
, p.
102726
.
37.
Gharehbaghi
,
V. R.
,
Noroozinejad Farsangi
,
E.
,
Noori
,
M.
,
Yang
,
T. Y.
,
Li
,
S.
,
Nguyen
,
A.
,
Málaga-Chuquitaype
,
C.
,
Gardoni
,
P.
, and
Mirjalili
,
S.
,
2022
, “
A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives
,”
Arch. Comput. Methods Eng.
,
29
(
4
), pp.
2209
2235
.
38.
Mishra
,
M.
,
Lourenço
,
P. B.
, and
Ramana
,
G.
,
2022
, “
Structural Health Monitoring of Civil Engineering Structures by Using the Internet of Things: A Review
,”
J. Build. Eng.
,
48
, p.
103954
.
39.
Sun
,
M.
,
Staszewski
,
W.
, and
Swamy
,
R.
,
2010
, “
Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures
,”
Adv. civil Eng.
,
2010
(
1
), p.
724962
.
40.
Ochieng
,
F. X.
,
Hancock
,
C. M.
,
Roberts
,
G. W.
, and
Le Kernec
,
J.
,
2018
, “
A Review of Ground-based Radar as a Noncontact Sensor for Structural Health Monitoring of In-Field Wind Turbines Blades
,”
Wind Energy
,
21
(
12
), pp.
1435
1449
.
41.
Sacks
,
R.
,
Brilakis
,
I.
,
Pikas
,
E.
,
Xie
,
H. S.
, and
Girolami
,
M.
,
2020
, “
Construction With Digital Twin Information Systems
,”
Data-Centric Eng.
,
1
, p.
e14
.
42.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Proc. Manufact.
,
11
, pp.
939
948
, 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, June 27–30, Modena, Italy.
43.
Liu
,
M.
,
Fang
,
S.
,
Dong
,
H.
, and
Xu
,
C.
,
2021
, “
Review of Digital Twin About Concepts, Technologies, and Industrial Applications
,”
J. Manufact. Syst.
,
58
, pp.
346
361
, Digital Twin Towards Smart Manufacturing and Industry 4.0.
44.
Katz
,
C.
,
2008
, “
Parametric Description of Bridge Structures
,” International Association for Bridge and Structural Engineering, Tech. Rep. 18, IABSE Symposium Report. Zurich, Switzerland, http://thost-iabse-elearning.org/l25/data/downloads/Katz_Reference.pdf, Accessed August 16, 2024.
45.
Venugopal
,
M.
,
Eastman
,
C.
,
Sacks
,
R.
, and
Teizer
,
J.
,
2011
, “
Improving the Robustness of Model Exchanges Using Product Modeling "Concepts" for IFC Schema
,”
Computing in Civil Engineering
,
Miami, FL
,
June 19–22
,
pp. 611–618
.
46.
Halfawy
,
M. R.
, and
Froese
,
T.
,
2002
, “
Modeling and Implementation of Smart AEC Objects: An IFC Perspective
,”
Proceedings of the CIB w78 Conference: Distributing Knowledge in Building
,
Aarhus School of Architecture, Denmark
,
June 12–14
, International Council for Research and Innovation in Building and Construction, pp.
1
8
.
47.
Girardet
,
A.
, and
Boton
,
C.
,
2021
, “
A Parametric BIM Approach to Foster Bridge Project Design and Analysis
,”
Auto. Const.
,
126
, p.
103679
.
48.
Azhar
,
S.
, and
Brown
,
J.
,
2009
, “
BIM for Sustainability Analyses
,”
Inter. J. Const. Education Res.
,
5
(
4
), pp.
276
292
.
49.
Wong
,
J. K.-W.
, and
Kuan
,
K. -L.
,
2014
, “
Implementing ‘BEAM Plus’ for BIM-Based Sustainability Analysis
,”
Auto. Const.
,
44
, pp.
163
175
.
50.
Nguyen
,
T.
,
Shehab
,
T.
, and
Gao
,
Z.
,
2010
, “
Evaluating Sustainability of Architectural Designs Using Building Information Modeling
,”
Open Const. Build. Tech. J.
,
4
(
1
), pp.
1
8
.
51.
Lee
,
Y.-C.
,
Eastman
,
C. M.
,
Solihin
,
W.
, and
See
,
R.
,
2016
, “
Modularized Rule-Based Validation of a BIM Model Pertaining to Model Views
,”
Auto. Const.
,
63
, pp.
1
11
.
52.
Pauwels
,
2015
, “
IFC2RDFtools
,”
CIB W78 Accelerating BIM Workshop
,
Eindhoven, Netherlands
,
October 26
, https://www.slideshare.net/slideshow/20151023ifc2rdftoolingslideshare/54378180, Accessed August 16, 2024.
53.
Lee
,
Y.-C.
,
Eastman
,
C. M.
, and
Lee
,
J.-K.
,
2015
, “
Validations for Ensuring the Interoperability of Data Exchange of a Building Information Model
,”
Auto. Const.
,
58
, pp.
176
195
.
54.
Boje
,
C.
,
Guerriero
,
A.
,
Kubicki
,
S.
, and
Rezgui
,
Y.
,
2020
, “
Towards a Semantic Construction Digital Twin: Directions for Future Research
,”
Auto. Const.
,
114
, p.
103179
.
55.
Pauwels
,
P.
,
Zhang
,
S.
, and
Lee
,
Y.-C.
,
2017
, “
Semantic Web Technologies in AEC Industry: A Literature Overview
,”
Auto. Const.
,
73
, pp.
145
165
.
56.
Le
,
T.
, and
Jeong
,
H. D.
,
2016
, “
Interlinking Life-Cycle Data Spaces to Support Decision Making in Highway Asset Management
,”
Auto. Const.
,
64
, pp.
54
64
.
57.
Venugopal
,
M.
,
Eastman
,
C. M.
, and
Teizer
,
J.
,
2015
, “
An Ontology-Based Analysis of the Industry Foundation Class Schema for Building Information Model Exchanges
,”
Adv. Eng. Inform.
,
29
(
4
), pp.
940
957
, Collective Intelligence Modeling, Analysis, and Synthesis for Innovative Engineering Decision Making Special Issue of the 1st International Conference on Civil and Building Engineering Informatics.
58.
Pauwels
,
P.
, and
Terkaj
,
W.
,
2016
, “
EXPRESS to OWL for Construction Industry: Towards a Recommendable and Usable IfcOWL Ontology
,”
Auto. Const.
,
63
, pp.
100
133
.
59.
Deng
,
M.
,
Menassa
,
C. C.
, and
Kamat
,
V. R.
,
2021
, “
From BIM to Digital Twins: A Systematic Review of the Evolution of Intelligent Building Representations in the AEC-FM Industry
,”
J. Inform. Technol. Const.
,
26
, pp.
58
83
.
60.
Zhang
,
C.
,
Zayed
,
T.
,
Hijazi
,
W.
, and
Alkass
,
S.
,
2016
, “
Quantitative Assessment of Building Constructability Using BIM and 4D Simulation
,”
Open J. Civil Eng.
,
6
(
03
), p.
442
.
61.
Tagliabue
,
L. C.
,
Maltese
,
S.
,
Re Cecconi
,
F.
,
Ciribini
,
A. L. C.
, and
De Angelis
,
E.
,
2018
, “
BIM-Based Interoperable Workflow for Energy Improvement of School Buildings Over the Life Cycle
,”
Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC 2018)
,
Berlin, Germany
,
July 20–25
, pp.
20
25
.
62.
Shahzad
,
S.
,
Calautit
,
J. K.
,
Hughes
,
B. R.
,
Satish
,
B.
, and
Rijal
,
H. B.
,
2019
, “
Patterns of Thermal Preference and Visual Thermal Landscaping Model in the Workplace
,”
Appl. Energy.
,
255
, p.
113674
.
63.
Ma
,
G.
,
Liu
,
Y.
, and
Shang
,
S.
,
2019
, “
A Building Information Model (BIM) and Artificial Neural Network (ANN) Based System for Personal Thermal Comfort Evaluation and Energy Efficient Design of Interior Space
,”
Sustainability
,
11
(
18
), p.
4972
.
64.
Cheng
,
J. C.
, and
Das
,
M.
,
2014
, “
A BIM-Based Web Service Framework for Green Building Energy Simulation and Code Checking
,”
J. Inform. Technol. Const. (ITcon)
,
19
(
8
), pp.
150
168
.
65.
Wu
,
C.
, and
Clayton
,
M.
,
2013
, “
BIM-Based Acoustic Simulation Framework
,”
30th CIB W78 International Conference
,
Beijing, China
,
Oct. 9–12
, pp.
99
108
.
66.
Tang
,
S.
,
Shelden
,
D. R.
,
Eastman
,
C. M.
,
Pishdad-Bozorgi
,
P.
, and
Gao
,
X.
,
2019
, “
A Review of Building Information Modeling (BIM) and the Internet of Things (IoT) Devices Integration: Present Status and Future Trends
,”
Auto. Const.
,
101
, pp.
127
139
.
67.
Tang
,
P.
,
Huber
,
D.
,
Akinci
,
B.
,
Lipman
,
R.
, and
Lytle
,
A.
,
2010
, “
Automatic Reconstruction of As-built Building Information Models From Laser-Scanned Point Clouds: A Review of Related Techniques
,”
Auto. Const.
,
19
(
7
), pp.
829
843
.
68.
Bosché
,
F.
,
Guillemet
,
A.
,
Turkan
,
Y.
,
Haas
,
C. T.
, and
Haas
,
R.
,
2014
, “
Tracking the Built Status of MEP Works: Assessing the Value of a Scan-vs-BIM System
,”
J. Comput. Civil Eng.
,
28
(
4
), p.
05014004
.
69.
Bosché
,
F.
,
Ahmed
,
M.
,
Turkan
,
Y.
,
Haas
,
C. T.
, and
Haas
,
R.
,
2015
, “
The Value of Integrating Scan-to-BIM and Scan-vs-BIM Techniques for Construction Monitoring Using Laser Scanning and BIM: The Case of Cylindrical MEP Components
,”
Auto. Const.
,
49
, pp.
201
213
.
70.
Lu
,
Q.
,
Xie
,
X.
,
Heaton
,
J.
,
Parlikad
,
A. K.
, and
Schooling
,
J.
,
2020
, “
From BIM Towards Digital Twin: Strategy and Future Development for Smart Asset Management
,”
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future
,
T.
Borangiu
,
D.
Trentesaux
,
P.
Leitão
,
A. Giret
Boggino
, and
V.
Botti
, eds.,
Springer International Publishing
,
Cham
, pp.
392
404
.
71.
Lu
,
Q.
,
Parlikad
,
A. K.
,
Woodall
,
P.
,
Don Ranasinghe
,
G.
,
Xie
,
X.
,
Liang
,
Z.
,
Konstantinou
,
E.
,
Heaton
,
J.
, and
Schooling
,
J.
,
2020
, “
Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus
,”
J. Manage. Eng.
,
36
(
3
), p.
05020004
.
72.
Lu
,
Q.
,
Xie
,
X.
,
Parlikad
,
A. K.
, and
Schooling
,
J. M.
,
2020
, “
Digital Twin-Enabled Anomaly Detection for Built Asset Monitoring in Operation and Maintenance
,”
Auto. Const.
,
118
, p.
103277
.
73.
Badenko
,
V.
,
Bolshakov
,
N.
,
Tishchenko
,
E.
,
Fedotov
,
A.
,
Celani
,
A.
, and
Yadykin
,
V.
,
2021
, “
Integration of Digital Twin and BIM Technologies Within Factories of the Future
,”
Magaz. Civil Eng.
,
1
(
101
), p.
10114
.
74.
Zhao
,
Z.
,
Shen
,
L.
,
Yang
,
C.
,
Wu
,
W.
,
Zhang
,
M.
, and
Huang
,
G. Q.
,
2021
, “
IoT and Digital Twin Enabled Smart Tracking for Safety Management
,”
Comput. Operat. Res.
,
128
, p.
105183
.
75.
Sartipi
,
F.
,
2020
, “
Influence of 5G and IoT in Construction and Demolition Waste Recycling–Conceptual Smart City Design
,”
J. Const. Mater.
,
1
(
4
), pp.
1
9
. http://doi.org/10.36756/JCM.v1.4.1
76.
Ahmed
,
F.
,
Phillips
,
M.
,
Phillips
,
S.
, and
Kim
,
K.-Y.
,
2020
, “
Comparative Study of Seamless Asset Location and Tracking Technologies
,”
Procedia Manuf.
,
51
, pp.
1138
1145
, 30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021).
77.
Rao
,
A. S.
,
Radanovic
,
M.
,
Liu
,
Y.
,
Hu
,
S.
,
Fang
,
Y.
,
Khoshelham
,
K.
,
Palaniswami
,
M.
, and
Ngo
,
T.
,
2022
, “
Real-Time Monitoring of Construction Sites: Sensors, Methods, and Applications
,”
Auto. Const.
,
136
, p.
104099
.
78.
El-Omari
,
S.
, and
Moselhi
,
O.
,
2011
, “
Integrating Automated Data Acquisition Technologies for Progress Reporting of Construction Projects
,”
Auto. Const.
,
20
(
6
), pp.
699
705
, Selected papers from the 26th ISARC 2009.
79.
Gigabyte
,
2024
, “Point Cloud,” https://www.gigabyte.com/Glossary/point-cloud, Accessed February 28, 2024.
80.
Mikhail
,
E. M.
,
Bethel
,
J. S.
, and
McGlone
,
J. C.
,
2001
,
Introduction to Modern Photogrammetry
,
John Wiley & Sons
,
Hoboken, NJ
.
81.
Elhashash
,
M.
,
Albanwan
,
H.
, and
Qin
,
R.
,
2022
, “
A Review of Mobile Mapping Systems: From Sensors to Applications
,”
Sensors
,
22
(
11
), p.
4262
.
82.
Dai
,
F.
,
Rashidi
,
A.
,
Brilakis
,
I.
, and
Vela
,
P.
,
2013
, “
Comparison of Image-Based and Time-of-Flight-Based Technologies for Three-Dimensional Reconstruction of Infrastructure
,”
J. Const. Eng. Manage.
,
139
(
1
), pp.
69
79
.
83.
Leon
,
C. P.
,
Jingdao
,
C.
,
Jisoo
,
P.
, and
Yong
,
K. C.
,
2021
, “
Multisensor-Driven Real-Time Crane Monitoring System for Blind Lift Operations: Lessons Learned From a Case Study
,”
Auto. Const.
,
124
, p.
103552
.
84.
Woodhead
,
R.
,
Stephenson
,
P.
, and
Morrey
,
D.
,
2018
, “
Digital Construction: From Point Solutions to IoT Ecosystem
,”
Auto. Const.
,
93
, pp.
35
46
.
85.
Khurshid
,
K.
,
Danish
,
A.
,
Salim
,
M. U.
,
Bayram
,
M.
,
Ozbakkaloglu
,
T.
, and
Mosaberpanah
,
M. A.
,
2023
, “
An In-depth Survey Demystifying the Internet of Things (IoT) in the Construction Industry: Unfolding New Dimensions
,”
Sustainability
,
15
(
2
), p.
1275
.
86.
Ghosh
,
A.
,
Edwards
,
D. J.
, and
Hosseini
,
M. R.
,
2021
, “
Patterns and Trends in Internet of Things (IoT) Research: Future Applications in the Construction Industry
,”
Eng., Const. Arch. Manage.
,
28
(
2
), pp.
457
481
.
87.
Oke
,
A. E.
, and
Arowoiya
,
V. A.
,
2021
, “
Evaluation of Internet of Things (IoT) Application Areas for Sustainable Construction
,”
Smart Sustainable Built Environ.
,
10
(
3
), pp.
387
402
.
88.
Kazmi
,
A. H.
,
O’grady
,
M. J.
,
Delaney
,
D. T.
,
Ruzzelli
,
A. G.
, and
O’hare
,
G. M. P.
,
2014
, “
A Review of Wireless-Sensor-Network-Enabled Building Energy Management Systems
,”
ACM Trans. Sen. Netw.
,
10
(
4
), pp.
1
43
.
89.
Gubbi
,
J.
,
Buyya
,
R.
,
Marusic
,
S.
, and
Palaniswami
,
M.
,
2013
, “
Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions
,”
Future Generat. Comput. Syst.
,
29
(
7
), pp.
1645
1660
.
90.
Oracle
,
2023
, “
What is a Relational Database (RDBMS)
,” https://www.oracle.com/database/what-is-a-relational-database/#:~:text=A relational database is a,of representing data in tables, Accessed August 16, 2024.
91.
Skibniewski
,
M. J.
, and
Jang
,
W.-S.
,
2006
, “
Ubiquitous Computing: Object Tracking and Monitoring in Construction Processes Utilizing ZigBee Networks
,”
23rd International Symposium on Automation and Robotics in Construction (ISARC)
,
Tokyo, Japan
,
Oct. 3, 2006
, pp.
287
292
.
92.
IBM
,
2024
, “What is a Database Schema?” https://www.ibm.com/topics/ database-schema, Accessed August 16, 2024.
93.
Zhang
,
Y.
, and
Bai
,
L.
,
2015
, “
Rapid Structural Condition Assessment Using Radio Frequency Identification (RFID) Based Wireless Strain Sensor
,”
Auto. Const.
,
54
, pp.
1
11
.
94.
Solihin
,
W.
,
Eastman
,
C.
,
Lee
,
Y.-C.
, and
Yang
,
D.-H.
,
2017
, “
A Simplified Relational Database Schema for Transformation of BIM Data Into a Query-Efficient and Spatially Enabled Database
,”
Auto. Const.
,
84
, pp.
367
383
.
95.
Mazairac
,
W.
, and
Beetz
,
J.
,
2013
, “
BIMQL—An Open Query Language for Building Information Models
,”
Adv. Eng. Inform.
,
27
(
4
), pp.
444
456
.
96.
Hu
,
S.
,
Corry
,
E.
,
Curry
,
E.
,
Turner
,
W. J.
, and
O’Donnell
,
J.
,
2016
, “
Building Performance Optimisation: A Hybrid Architecture for the Integration of Contextual Information and Time-Series Data
,”
Auto. Const.
,
70
, pp.
51
61
.
97.
Golparvar-Fard
,
M.
,
Peña-Mora
,
F.
, and
Savarese
,
S.
,
2009
, “
D4AR–a 4-Dimensional Augmented Reality Model for Automating Construction Progress Monitoring Data Collection, Processing and Communication
,”
J. Inform. Technol. Const.
,
14
(
13
), pp.
129
153
.
98.
Alaloul
,
W. S.
,
Qureshi
,
A. H.
,
Musarat
,
M. A.
, and
Saad
,
S.
,
2021
, “
Evolution of Close-Range Detection and Data Acquisition Technologies Towards Automation in Construction Progress Monitoring
,”
J. Build. Eng.
,
43
, p.
102877
.
99.
Braun
,
A.
,
Tuttas
,
S.
,
Borrmann
,
A.
, and
Stilla
,
U.
,
2015
, “
A Concept for Automated Construction Progress Monitoring Using BIM-Based Geometric Constraints and Photogrammetric Point Clouds
,”
J. Inf. Technol. Constr.
,
20
(
5
), pp.
68
79
.
100.
Kopsida
,
M.
,
Brilakis
,
I.
, and
Vela
,
P. A.
,
2015
, “
A Review of Automated Construction Progress Monitoring and Inspection Methods
,”
Proceedings of the 32nd CIB W78 Conference
,
Eindhoven, The Netherlands
,
Oct. 27–29
, pp.
421
431
.
101.
Puc̆ko
,
Z.
,
S̆uman
,
N.
, and
Rebolj
,
D.
,
2018
, “
Automated Continuous Construction Progress Monitoring Using Multiple Workplace Real Time 3D Scans
,”
Adv. Eng. Inform.
,
38
, pp.
27
40
.
102.
Ekanayake
,
B.
,
Wong
,
J. K.-W.
,
Fini
,
A. A. F.
, and
Smith
,
P.
,
2021
, “
Computer Vision-Based Interior Construction Progress Monitoring: A Literature Review and Future Research Directions
,”
Auto. Const.
,
127
, p.
103705
.
103.
Reja
,
V.
,
Pradeep
,
M.
, and
Varghese
,
K.
,
2022
, “
A Systematic Classification and Evaluation of Automated Progress Monitoring Technologies in Construction
,”
Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC)
,
Berlin, Germany
,
July 20–25, 2018
,
pp. 120–127
.
104.
Hou
,
L.
,
Wu
,
S.
,
Zhang
,
G.
,
Tan
,
Y.
, and
Wang
,
X.
,
2020
, “
Literature Review of Digital Twins Applications in Construction Workforce Safety
,”
Appl. Sci.
,
11
(
1
), p.
339
.
105.
Soltani
,
M. M.
,
Zhu
,
Z.
, and
Hammad
,
A.
,
2018
, “
Framework for Location Data Fusion and Pose Estimation of Excavators Using Stereo Vision
,”
J. Comput. Civil Eng.
,
32
(
6
), p.
04018045
.
106.
Park
,
M.-W.
, and
Brilakis
,
I.
,
2016
, “
Continuous Localization of Construction Workers Via Integration of Detection and Tracking
,”
Auto. Const.
,
72
, pp.
129
142
.
107.
Konstantinou
,
E.
, and
Brilakis
,
I.
,
2018
, “
Matching Construction Workers Across Views for Automated 3D Vision Tracking on-site
,”
J. Const. Eng. Manage.
,
144
(
7
), p.
04018061
.
108.
Park
,
M.-W.
,
Elsafty
,
N.
, and
Zhu
,
Z.
,
2015
, “
Hardhat-Wearing Detection for Enhancing On-site Safety of Construction Workers
,”
J. Const. Eng. Manage.
,
141
(
9
), p.
04015024
.
109.
Zhang
,
S.
,
Teizer
,
J.
,
Lee
,
J.-K.
,
Eastman
,
C. M.
, and
Venugopal
,
M.
,
2013
, “
Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules
,”
Auto. Const.
,
29
, pp.
183
195
.
110.
Getuli
,
V.
,
Ventura
,
S. M.
,
Capone
,
P.
, and
Ciribini
,
A. L.
,
2017
, “
BIM-Based Code Checking for Construction Health and Safety
,”
Procedia. Eng.
,
196
, pp.
454
461
, Creative Construction Conference 2017, CCC 2017, June 19–22, 2017, Primosten, Croatia.
111.
Ye
,
Z.
,
Ye
,
Y.
,
Zhang
,
C.
,
Zhang
,
Z.
,
Li
,
W.
,
Wang
,
X.
,
Wang
,
L.
, and
Wang
,
L.
,
2023
, “
A Digital Twin Approach for Tunnel Construction Safety Early Warning and Management
,”
Comput. Industry
,
144
, p.
103783
.
112.
Racha
,
C.
,
Mian
,
A. H.
,
Ahmad
,
M. A.
,
Hashim
,
I. S.
,
Huda
,
D.
,
Sergio
,
R.-T.
,
Mohamad
,
K.
,
Khalid
,
K. N.
, and
Nashwan
,
D.
,
2021
, “
Cost-Benefit Analysis of BIM-Enabled Design Clash Detection and Resolution
,”
Const. Manage. Economics
,
39
(
1
), pp.
55
72
.
113.
Seo
,
J.-H.
,
Lee
,
B.-R.
,
Kim
,
J.-H.
, and
Kim
,
J.-J.
,
2012
, “
Collaborative Process to Facilitate BIM-Based Clash Detection Tasks for Enhancing Constructability
,”
J. Korea Inst. Build. Const.
,
12
(
3
), pp.
299
314
.
114.
Rokooei
,
S.
,
2015
, “
Building Information Modeling in Project Management: Necessities, Challenges and Outcomes
,”
Proc.-Soc. Behav. Sci.
,
210
, pp.
87
95
.
115.
Akponeware
,
A. O.
, and
Adamu
,
Z. A.
,
2017
, “
Clash Detection or Clash Avoidance? An Investigation Into Coordination Problems in 3D BIM
,”
Buildings
,
7
(
3
), p.
75
.
116.
Hartmann
,
T.
,
2010
, “
Detecting Design Conflicts Using Building Information Models: A Comparative Lab Experiment
,”
Proceedings of the CIB W78 2010: 27th International Conference
,
Cairo, Egypt
,
Nov. 16–19
, pp.
201
210
.
117.
Hu
,
Y.
,
Castro-Lacouture
,
D.
,
Eastman
,
C. M.
, and
Navathe
,
S. B.
,
2020
, “
Automatic Clash Correction Sequence Optimization Using a Clash Dependency Network
,”
Auto. Const.
,
115
, p.
103205
.
118.
van den Helm
,
P.
,
Böhms
,
M.
, and
van Berlo
,
L.
,
2010
, “IFC-Based Clash Detection for the Open-Source BIMserver,” Computing in Civil and Building Engineering, Proceedings of the International Conference, Nottingham University Press, Nottingham, UK, Vol. 181.
119.
Gholizadeh
,
P.
,
Esmaeili
,
B.
, and
Goodrum
,
P.
,
2018
, “
Diffusion of Building Information Modeling Functions in the Construction Industry
,”
J. Manage. Eng.
,
34
(
2
), p.
04017060
.
120.
Hu
,
Y.
, and
Castro-Lacouture
,
D.
,
2019
, “
Clash Relevance Prediction Based on Machine Learning
,”
J. Comput. Civil Eng.
,
33
(
2
), p.
04018060
.
121.
Said
,
H.
, and
El-Rayes
,
K.
,
2014
, “
Automated Multi-objective Construction Logistics Optimization System
,”
Auto. Const.
,
43
, pp.
110
122
.
122.
Greif
,
T.
,
Stein
,
N.
, and
Flath
,
C. M.
,
2020
, “
Peeking Into the Void: Digital Twins for Construction Site Logistics
,”
Comput. Industry
,
121
, p.
103264
.
123.
Dave
,
B.
,
Kubler
,
S.
,
Främling
,
K.
, and
Koskela
,
L.
,
2016
, “
Opportunities for Enhanced Lean Construction Management Using Internet of Things Standards
,”
Auto. Const.
,
61
, pp.
86
97
.
124.
Dede
,
T.
,
Kripka
,
M.
,
Togan
,
V.
,
Yepes
,
V.
, and
Rao
,
R. V.
,
2019
, “
Usage of Optimization Techniques in Civil Engineering During the Last Two Decades
,”
Current Trends Civil Struct. Eng.
,
2
(
1
), pp.
1
17
.
125.
Zhang
,
H.
, and
Li
,
H.
,
2010
, “
Multi-objective Particle Swarm Optimization for Construction Time-Cost Tradeoff Problems
,”
Const. Manage. Econo.
,
28
(
1
), pp.
75
88
.
126.
Afshar
,
A.
,
Ziaraty
,
A. K.
,
Kaveh
,
A.
, and
Sharifi
,
F.
,
2009
, “
Nondominated Archiving Multicolony Ant Algorithm in Time–Cost Trade-Off Optimization
,”
J. Const. Eng. Manage.
,
135
(
7
), pp.
668
674
.
127.
Zhang
,
Y.
, and
Ng
,
S. T.
,
2012
, “
An Ant Colony System Based Decision Support System for Construction Time-Cost Optimization
,”
J. Civ. Eng. Manag.
,
18
(
4
), pp.
580
589
.
128.
Aminbakhsh
,
S.
, and
Sonmez
,
R.
,
2016
, “
Discrete Particle Swarm Optimization Method for the Large-Scale Discrete Time-Cost Trade-Off Problem
,”
Expert. Syst. Appl.
,
51
, pp.
177
185
.
129.
Koo
,
C.
,
Hong
,
T.
, and
Kim
,
S.
,
2015
, “
An Integrated Multi-objective Optimization Model for Solving the Construction Time-Cost Trade-Off Problem
,”
J. Civ. Eng. Manag.
,
21
(
3
), pp.
323
333
.
130.
Li
,
H.
,
Chan
,
N.
,
Huang
,
T.
,
Guo
,
H.
,
Lu
,
W.
, and
Skitmore
,
M.
,
2009
, “
Optimizing Construction Planning Schedules by Virtual Prototyping Enabled Resource Analysis
,”
Auto. Const.
,
18
(
7
), pp.
912
918
.
131.
Rytter
,
A.
,
1993
, “Vibrational Based Inspection of Civil Engineering Structures,” Ph.D. thesis, University of Aalborg, Denmark.
132.
Zhu
,
Y.-C.
,
Wagg
,
D.
,
Cross
,
E.
, and
Barthorpe
,
R.
,
2020
, “
Real-Time Digital Twin Updating Strategy Based on Structural Health Monitoring Systems
,”
Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020
,
Z.
Mao
, ed.,
Springer International Publishing
,
Cham
, pp.
55
64
.
133.
Alonso
,
L.
,
Barbarán
,
J.
,
Chen
,
J.
,
Díaz
,
M.
,
Llopis
,
L.
, and
Rubio
,
B.
,
2018
, “
Middleware and Communication Technologies for Structural Health Monitoring of Critical Infrastructures: A Survey
,”
Comput. Stand. Interfaces
,
56
, pp.
83
100
.
134.
AlHamaydeh
,
M.
, and
Aswad
,
N. G.
,
2022
, “
Structural Health Monitoring Techniques and Technologies for Large-Scale Structures: Challenges, Limitations, and Recommendations
,”
Practice Periodical Struct. Design Const.
,
27
(
3
), p.
03122004
.
135.
Chen
,
H.-P.
,
2018
,
Structural Health Monitoring of Large Civil Engineering Structures
,
John Wiley & Sons
,
Hoboken, NJ
.
136.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. Royal Society A: Math., Phys. Eng. Sci.
,
365
(
1851
), pp.
303
315
.
137.
Goyal
,
D.
, and
Pabla
,
B.
,
2016
, “
The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
585
594
.
138.
Gallet
,
A.
,
Rigby
,
S.
,
Tallman
,
T.
,
Kong
,
X.
,
Hajirasouliha
,
I.
,
Liew
,
A.
,
Liu
,
D.
,
Chen
,
L.
,
Hauptmann
,
A.
, and
Smyl
,
D.
,
2022
, “
Structural Engineering From an Inverse Problems Perspective
,”
Proc. R. Soc. A
,
478
(
2257
), p.
20210526
.
139.
Flah
,
M.
,
Nunez
,
I.
,
Ben Chaabene
,
W.
, and
Nehdi
,
M. L.
,
2021
, “
Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review
,”
Arch. Comput. Methods Eng.
,
28
(
4
), pp.
2621
2643
.
140.
Jahanshahi
,
M. R.
,
Masri
,
S. F.
, and
Sukhatme
,
G. S.
,
2011
, “
Multi-image Stitching and Scene Reconstruction for Evaluating Defect Evolution in Structures
,”
Struct. Health. Monit.
,
10
(
6
), pp.
643
657
.
141.
Lee
,
J.-H.
,
Ho
,
H.-N.
,
Shinozuka
,
M.
, and
Lee
,
J.-J.
,
2012
, “
An Advanced Vision-Based System for Real-Time Displacement Measurement of High-Rise Buildings
,”
Smart Mater. Struct.
,
21
(
12
), p.
125019
.
142.
Koch
,
C.
,
Paal
,
S. G.
,
Rashidi
,
A.
,
Zhu
,
Z.
,
König
,
M.
, and
Brilakis
,
I.
,
2014
, “
Achievements and Challenges in Machine Vision-Based Inspection of Large Concrete Structures
,”
Adv. Struct. Eng.
,
17
(
3
), pp.
303
318
.
143.
Ye
,
X.-W.
,
Dong
,
C.-Z.
, and
Liu
,
T.
,
2016
, “
A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications
,”
J. Sens.
,
2016
(
1
), p.
7103039
.
144.
Girshick
,
R.
,
Donahue
,
J.
,
Darrell
,
T.
, and
Malik
,
J.
,
2014
, “
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
580
587
.
145.
Redmon
,
J.
,
Divvala
,
S.
,
Girshick
,
R.
, and
Farhadi
,
A.
,
2016
, “
You Only Look Once: Unified, Real-Time Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 26–July 1
, pp.
779
788
.
146.
De Brabandere
,
B.
,
Neven
,
D.
, and
Van Gool
,
L.
,
2017
, “Semantic Instance Segmentation with a Discriminative Loss Function,” https://arxiv.org/abs/1708.02551.
147.
Perazzi
,
F.
,
Khoreva
,
A.
,
Benenson
,
R.
,
Schiele
,
B.
, and
Sorkine-Hornung
,
A.
,
2017
, “
Learning Video Object Segmentation From Static Images
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, pp.
3491
3500
.
148.
Spencer
,
B. F., Jr.
,
Hoskere
,
V.
, and
Narazaki
,
Y.
,
2019
, “
Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring
,”
Engineering
,
5
(
2
), pp.
199
222
.
149.
Horn
,
B. K.
, and
Schunck
,
B. G.
,
1981
, “
Determining Optical Flow
,”
Artif. Intell.
,
17
(
1
), pp.
185
203
.
150.
Salman
,
M.
,
Mathavan
,
S.
,
Kamal
,
K.
, and
Rahman
,
M.
,
2013
, “
Pavement Crack Detection Using the Gabor Filter
,”
16th International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), The Hague, The Netherlands
,
Oct. 6–9
,
pp. 2039–2044
.
151.
Mohan
,
A.
, and
Poobal
,
S.
,
2018
, “
Crack Detection Using Image Processing: A Critical Review and Analysis
,”
Alexandria. Eng. J.
,
57
(
2
), pp.
787
798
.
152.
Long
,
J.
, and
Buyukozturk
,
O.
,
2014
, “
Automated Structural Damage Detection Using One-Class Machine Learning
,”
Dynamics of Civil Structures, Volume 4: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014
,
F. N.
Catbas
, ed.,
Springer International Publishing
,
Cham
, pp.
117
128
.
153.
Yuan
,
F.-G.
,
Zargar
,
S. A.
,
Chen
,
Q.
, and
Wang
,
S.
,
2020
, “
Machine Learning for Structural Health Monitoring: Challenges and Opportunities
,”
Sens. Smart Struct. Technol. Civil, Mech., Aeros. Syst.
,
11379
, p.
1137903
.
154.
Zhang
,
A.
,
Wang
,
K. C.
,
Li
,
B.
,
Yang
,
E.
,
Dai
,
X.
,
Peng
,
Y.
,
Fei
,
Y.
,
Liu
,
Y.
,
Li
,
J. Q.
, and
Chen
,
C.
,
2017
, “
Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network
,”
Comput. Aided Civil Infrastruct. Eng.
,
32
(
10
), pp.
805
819
.
155.
Worden
,
K.
, and
Dulieu-Barton
,
J. M.
,
2004
, “
An Overview of Intelligent Fault Detection in Systems and Structures
,”
Struct. Health. Monit.
,
3
(
1
), pp.
85
98
.
156.
Do
,
B.
, and
Zhang
,
R.
,
2023
, “
Multi-fidelity Bayesian Optimization in Engineering Design
,”
arxiv
. https://arxiv.org/abs/2311.13050
157.
Do
,
B.
,
Adebiyi
,
T.
, and
Zhang
,
R.
,
2024
, “
Epsilon-Greedy Thompson Sampling to Bayesian Optimization
,”
arxiv
. https://arxiv.org/abs/2403.00540
158.
Hoskere
,
V.
,
Narazaki
,
Y.
,
Hoang
,
T. A.
, and
Spencer
,
B. F., Jr.
,
2018
, “
Towards Automated Post-Earthquake Inspections With Deep Learning-Based Condition-Aware Models
,”
arxiv
. https://arxiv.org/abs/1809.09195
159.
Taddei
,
T.
,
Penn
,
J. D.
,
Yano
,
M.
, and
Patera
,
A. T.
,
2018
, “
Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring
,”
Arch. Comput. Methods Eng.
,
25
(
1
), pp.
23
45
.
160.
Yang
,
Y.
,
Zhang
,
Y.
, and
Tan
,
X.
,
2021
, “
Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes
,”
Symmetry
,
13
(
11
), p.
1998
.
161.
Friswell
,
M.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
, Vol.
38
,
Springer Science & Business Media
,
Netherlands
, pp.
7
35
.
162.
Sanayei
,
M.
,
Khaloo
,
A.
,
Gul
,
M.
, and
Catbas
,
F. N.
,
2015
, “
Automated Finite Element Model Updating of a Scale Bridge Model Using Measured Static and Modal Test Data
,”
Eng. Struct.
,
102
, pp.
66
79
.
163.
Suzuki
,
A.
,
Kurata
,
M.
,
Li
,
X.
, and
Shimmoto
,
S.
,
2017
, “
Residual Structural Capacity Evaluation of Steel Moment-resisting Frames With Dynamic-Strain-Based Model Updating Method
,”
Earthquake Eng. Struct. Dyn.
,
46
(
11
), pp.
1791
1810
.
164.
Kim
,
J.-T.
,
Ryu
,
Y.-S.
,
Cho
,
H.-M.
, and
Stubbs
,
N.
,
2003
, “
Damage Identification in Beam-Type Structures: Frequency-Based Method vs Mode-Shape-Based Method
,”
Eng. Struct.
,
25
(
1
), pp.
57
67
.
165.
Shi
,
Z. Y.
,
Law
,
S. S.
, and
Zhang
,
L. M.
,
2000
, “
Structural Damage Detection From Modal Strain Energy Change
,”
J. Eng. Mech.
,
126
(
12
), pp.
1216
1223
.
166.
Pandey
,
A.
, and
Biswas
,
M.
,
1994
, “
Damage Detection in Structures Using Changes in Flexibility
,”
J. Sound. Vib.
,
169
(
1
), pp.
3
17
.
167.
Jaishi
,
B.
, and
Ren
,
W.-X.
,
2006
, “
Damage Detection by Finite Element Model Updating Using Modal Flexibility Residual
,”
J. Sound. Vib.
,
290
(
1–2
), pp.
369
387
.
168.
Staszewski
,
W. J.
,
Worden
,
K.
, and
Tomlinson
,
G. R.
,
1997
, “
Time–Frequency Analysis in Gearbox Fault Detection Using the Wigner–Ville Distribution and Pattern Recognition
,”
Mech. Syst. Signal. Process.
,
11
(
5
), pp.
673
692
.
169.
Ovanesova
,
A.
, and
Suarez
,
L. E.
,
2004
, “
Applications of Wavelet Transforms to Damage Detection in Frame Structures
,”
Eng. Struct.
,
26
(
1
), pp.
39
49
.
170.
Bernal
,
D.
,
2002
, “
Load Vectors for Damage Localization
,”
J. Eng. Mech.
,
128
(
1
), pp.
7
14
.
171.
Yang
,
J. N.
,
Lei
,
Y.
,
Lin
,
S.
, and
Huang
,
N.
,
2004
, “
Hilbert-Huang Based Approach for Structural Damage Detection
,”
J. Eng. Mech.
,
130
(
1
), pp.
85
95
.
172.
Bigoni
,
C.
, and
Hesthaven
,
J. S.
,
2020
, “
Simulation-Based Anomaly Detection and Damage Localization: An Application to Structural Health Monitoring
,”
Comput. Methods. Appl. Mech. Eng.
,
363
, p.
112896
.
173.
Pimentel
,
M. A.
,
Clifton
,
D. A.
,
Clifton
,
L.
, and
Tarassenko
,
L.
,
2014
, “
A Review of Novelty Detection
,”
Signal Process.
,
99
, pp.
215
249
.
174.
Goldstein
,
M.
, and
Uchida
,
S.
,
2016
, “
A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data
,”
PLoS. One.
,
11
(
4
), pp.
1
31
.
175.
Liu
,
F. T.
,
Ting
,
K. M.
, and
Zhou
,
Z. -H.
,
2008
, “
Isolation Forest
,”
2008 Eighth IEEE International Conference on Data Mining
,
Pisa, Italy
,
Dec. 15–19
, pp.
413
422
.
176.
Breunig
,
M. M.
,
Kriegel
,
H. -P.
,
Ng
,
R. T.
, and
Sander
,
J.
,
2000
, “
LOF: Identifying Density-Based Local Outliers
,”
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
,
Dallas, TX
,
May 16–18
, pp.
93
104
.
177.
Das
,
S.
,
Srivastava
,
A. N.
, and
Chattopadhyay
,
A.
,
2007
, “
Classification of Damage Signatures in Composite Plates Using One-Class SVMs
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 3–10
, pp.
1
19
.
178.
Anaissi
,
A.
,
Khoa
,
N. L. D.
,
Mustapha
,
S.
,
Alamdari
,
M. M.
,
Braytee
,
A.
,
Wang
,
Y.
, and
Chen
,
F.
,
2017
, “
Adaptive One-Class Support Vector Machine for Damage Detection in Structural Health Monitoring
,”
Pacific-Asia Conference on Knowledge Discovery and Data Mining
,
Jeju, South Korea
,
May 23–26
, pp.
42
57
.
179.
Schölkopf
,
B.
,
Platt
,
J. C.
,
Shawe-Taylor
,
J.
,
Smola
,
A. J.
, and
Williamson
,
R. C.
,
2001
, “
Estimating the Support of a High-Dimensional Distribution
,”
Neural Comput.
,
13
(
7
), pp.
1443
1471
.
180.
Thaprasop
,
P.
,
Zhou
,
K.
,
Steinheimer
,
J.
, and
Herold
,
C.
,
2021
, “
Unsupervised Outlier Detection in Heavy-Ion Collisions
,”
Phys. Scr.
,
96
(
6
), p.
064003
.
181.
Siddiqui
,
F.
,
Sargent
,
P.
, and
Montague
,
G.
,
2020
, “
The Use of PCA and Signal Processing Techniques for Processing Time-Based Construction Settlement Data of Road Embankments
,”
Adv. Eng. Inform.
,
46
, p.
101181
.
182.
Zonzini
,
F.
,
Girolami
,
A.
,
De Marchi
,
L.
,
Marzani
,
A.
, and
Brunelli
,
D.
,
2020
, “
Cluster-Based Vibration Analysis of Structures With GSP
,”
IEEE. Trans. Ind. Electron.
,
68
(
4
), pp.
3465
3474
.
183.
Moallemi
,
A.
,
Burrello
,
A.
,
Brunelli
,
D.
, and
Benini
,
L.
,
2021
, “
Model-Based vs. Data-Driven Approaches for Anomaly Detection in Structural Health Monitoring: A Case Study
,”
IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
,
Virtual
,
May 17–20
, pp.
1
6
.
184.
Cui
,
Z.
,
Li
,
F.
, and
Zhang
,
W.
,
2019
, “
Bat Algorithm With Principal Component Analysis
,”
Inter. J. Mach. Learn. Cybernet.
,
10
, pp.
603
622
.
185.
Ritto
,
T.
, and
Rochinha
,
F.
,
2021
, “
Digital Twin, Physics-Based Model, and Machine Learning Applied to Damage Detection in Structures
,”
Mech. Syst. Signal Proc.
,
155
, p.
107614
.
186.
Razavi
,
S.
,
Tolson
,
B. A.
, and
Burn
,
D. H.
,
2012
, “
Review of Surrogate Modeling in Water Resources
,”
Water. Resour. Res.
,
48
(
7
), pp.
1
32
.
187.
Chua
,
P. C.
,
Moon
,
S. K.
,
Ng
,
Y. T.
, and
Ng
,
H. Y.
,
2021
, “
A Surrogate Model to Predict Production Performance in Digital Twin-Based Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031007
.
188.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19-20
), pp.
1904
1917
.
189.
Basudhar
,
A.
,
Missoum
,
S.
, and
Sanchez
,
A. H.
,
2008
, “
Limit State Function Identification Using Support Vector Machines for Discontinuous Responses and Disjoint Failure Domains
,”
Probabilistic. Eng. Mech.
,
23
(
1
), pp.
1
11
.
190.
Yadav
,
A.
, and
Zhang
,
R.
,
2024
, “Stochastic Subspace via Probabilistic Principal Component Analysis for Characterizing Model-form Uncertainty.” arXiv.
191.
Hesthaven
,
J. S.
,
Rozza
,
G.
, and
Stamm
,
B.
,
2016
,
Certified Reduced Basis Methods for Parametrized Partial Differential Equations
, Vol.
590
,
Springer
,
Berlin, Germany
.
192.
Quarteroni
,
A.
,
Manzoni
,
A.
, and
Negri
,
F.
,
2015
,
Reduced Basis Methods for Partial Differential Equations: An Introduction
, Vol.
92
,
Springer
,
Switzerland
.
193.
Maday
,
Y.
, and
Rønquist
,
E. M.
,
2002
, “
A Reduced-Basis Element Method
,”
J. Sci. Comput.
,
17
, pp.
447
459
.
194.
Zhang
,
R.
,
Mak
,
S.
, and
Dunson
,
D.
,
2022
, “
Gaussian Process Subspace Prediction for Model Reduction
,”
SIAM J. Sci. Comput.
,
44
(
3
), pp.
A1428
A1449
.
195.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
(
6
), pp.
211
244
.
196.
Wipf
,
D. P.
, and
Rao
,
B. D.
,
2004
, “
Sparse Bayesian Learning for Basis Selection
,”
IEEE Trans. Signal Process.
,
52
(
8
), pp.
2153
2164
.
197.
Zhang
,
Z.
, and
Rao
,
B. D.
,
2011
, “
Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning
,”
IEEE J. Select. Topics Signal Process.
,
5
(
5
), pp.
912
926
.
198.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
199.
Zhang
,
R.
, and
Ghanem
,
R.
,
2021
, “
Normal-Bundle Bootstrap
,”
SIAM J. Math. Data Sci.
,
3
(
2
), pp.
573
592
.
200.
Worden
,
K.
,
Cross
,
E.
,
Barthorpe
,
R.
,
Wagg
,
D.
, and
Gardner
,
P.
,
2020
, “
On Digital Twins, Mirrors, and Virtualizations: Frameworks for Model Verification and Validation
,”
J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
6
(
3
), p.
030902
.
201.
Febrianto
,
E.
,
Butler
,
L.
,
Girolami
,
M.
, and
Cirak
,
F.
,
2022
, “
Digital Twinning of Self-Sensing Structures Using the Statistical Finite Element Method
,”
Data-Centric Eng.
,
3
, p.
e31
.
202.
Bordegoni
,
M.
, and
Ferrise
,
F.
,
2023
, “
Exploring the Intersection of Metaverse, Digital Twins, and Artificial Intelligence in Training and Maintenance
,”
J. Comput. Inform. Sci. Eng.
,
23
(
6
), p.
060806
.
203.
Karve
,
P. M.
,
Guo
,
Y.
,
Kapusuzoglu
,
B.
,
Mahadevan
,
S.
, and
Haile
,
M. A.
,
2020
, “
Digital Twin Approach for Damage-Tolerant Mission Planning Under Uncertainty
,”
Eng. Fract. Mech.
,
225
, p.
106766
.
You do not currently have access to this content.