Abstract

Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the generative design of CPHS and CPHS families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. The need for a new CPHS transdiscipline is identified. With the proposed approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.

References

1.
Yilma
,
B. A.
,
Panetto
,
H.
, and
Naudet
,
Y.
,
2021
, “
Systemic Formalisation of Cyber-Physical-Social System (CPSS): A Systematic Literature Review
,”
Comput. Ind.
,
129
, p.
103458
.
2.
Lee
,
E. A.
, and
Seshia
,
S. A.
,
2017
,
Introduction to Embedded Systems: A Cyber-Physical Systems Approach
, 2nd ed.,
The MIT Press
,
Cambridge, MA
.
3.
Rajkumar
,
R.
,
Lee
,
I.
,
Sha
,
L.
, and
Stankovic
,
J.
,
2010
, “
Cyber-Physical Systems: The Next Computing Revolution
,”
ACM Design Automation Conference
,
Anaheim, CA
,
June 13–18
, pp.
731
736
.
4.
Desai
,
S.
,
Mantha
,
S.
,
Phalle
,
V.
,
Patil
,
S.
, and
Handikherkar
,
V.
,
2018
, “
Design and Prototype Development of a Reconfigurable Wheelchair With Stand-Sit-Sleep Configurations
,”
ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
, Vol. 52026, p. V003T04A024.
5.
Gericke
,
K.
,
Qureshi
,
A. J.
, and
Blessing
,
L.
,
2013
, “
Analyzing Transdisciplinary Design Processes in Industry: An Overview
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
, Paper No. DETC2013-12154.
6.
Sharunova
,
A.
,
Wang
,
Y.
,
Kowalski
,
M.
, and
Qureshi
,
A. J.
,
2022
, “
Applying Bloom’s Taxonomy in Transdisciplinary Engineering Design Education
,”
Int. J. Technol. Des. Edu.
,
32
(
2
), pp.
987
999
.
7.
Blanchard
,
B. S.
,
2004
,
Systems Engineering Management
, 3rd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
8.
Madni
,
A. M.
, and
Sievers
,
M.
,
2018
, “
Model-Based Systems Engineering: Motivation, Current Status, and Research Opportunities
,”
Syst. Eng.
,
21
(
3
), pp.
172
190
.
9.
Bjorkman
,
E. A.
,
Sarkani
,
S.
, and
Mazzuchi
,
T. A.
,
2013
, “
Using Model-Based Systems Engineering as a Framework for Improving Test and Evaluation Activities
,”
Syst. Eng.
,
16
(
3
), pp.
346
362
.
10.
Sillitto
,
H.
,
Martin
,
J.
,
Griego
,
R.
,
McKinney
,
D.
,
Arnold
,
E.
,
Godfrey
,
P.
,
Dori
,
D.
,
Krob
,
D.
, and
Jackson
,
S.
,
2018
, “
Envisioning Systems Engineering as a Transdisciplinary Venture
,”
Insight
,
21
(
3
), pp.
52
61
.
11.
Welch
,
R. V.
, and
Dixon
,
J. R.
,
1994
, “
Guiding Conceptual Design Through Behavioral Reasoning
,”
Res. Eng. Des.
,
6
(
3
), pp.
169
188
.
12.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.
13.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
14.
Goldberg
,
D. E.
,
1991
, “Genetic Algorithms as a Computational Theory of Conceptual Design,”
Applications of Artificial Intelligence in Engineering VI
,
G.
Rzevski
,
and R. A.
Adey
, eds.,
Springer
,
Dordrecht
, pp.
3
16
.
15.
Autodesk
, https://www.autodesk.com/solutions/generative-design, Accessed September 2, 2022.
16.
nTopology
, https://ntopology.com/generative-design-software/, Accessed September 2, 2022.
17.
Rosen
,
D. W.
, and
Choi
,
Y. M.
,
2021
, “
Extending Product Family Design Methods to Product-Service-System Family Design
,”
International Conference on Engineering Design
,
Gothenburg, Sweden
,
Aug. 16–20
, pp.
1557
1566
.
18.
Jensen
,
J. C.
,
Chang
,
D. H.
, and
Lee
,
E. A.
,
2011
, “
A Model-Based Design Methodology for Cyber-Physical Systems
,”
2011 7th IEEE International Wireless Communications and Mobile Computing Conference
,
Istanbul, Turkey
,
July 4–8
, pp.
1666
1671
.
19.
Siddique
,
Z.
, and
Rosen
,
D. W.
,
2001
, “
On Discrete Design Spaces for the Configuration Design of Product Families
,”
Artif. Intell. Eng. Des. Autom. Manuf.
,
15
(
1
), pp.
1
18
.
20.
Corbett
,
B.
, and
Rosen
,
D. W.
,
2004
, “
A Configuration Design Based Method for Platform Commonization for Product Families
,”
Artif. Intell. Eng. Des. Autom. Manuf.
,
18
(
1
), pp.
21
39
.
21.
Hansen
,
J.-T.
, and
Rosen
,
D. W.
,
2019
, “
A Product Family Design Method for Configuration and Spatial Layout Requirements
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031008
.
22.
Sanderson
,
S.
, and
Uzumeri
,
M.
,
1995
, “
Managing Product Families—The Case of the Sony-Walkman
,”
Res. Policy
,
24
(
5
), pp.
761
782
.
23.
Jiao
,
J.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
24.
Jiao
,
J.
, and
Tseng
,
M. M.
,
1999
, “
A Methodology of Developing Product Family Architecture for Mass Customization
,”
J. Intell. Manuf.
,
10
(
1
), pp.
3
20
.
25.
Sakao
,
T.
,
Hara
,
T.
, and
Fukushima
,
R.
,
2020
, “
Using Product/Service-System Family Design for Efficient Customization With Lean Principles: Model, Method, and Tool
,”
Sustainability
,
12
(
14
), p.
5779
.
26.
Fargnoli
,
M.
,
Haber
,
N.
, and
Sakao
,
T.
,
2019
, “
PSS Modularization—A Customer Driven Integrated Approach
,”
Int. J. Prod. Res.
,
57
(
13
), pp.
4061
4077
.
27.
ISO
,
1998
, “
ISO 9241-11. Ergonomic Requirements for Office Work With Visual Display Terminals (VDTs)-Part 11, Guidance on Usability
.”
28.
Brooke
,
J.
,
1996
, “SUS: A “Quick and Dirty” Usability Scale,”
Usability Evaluation in Industry
,
P. W.
Jordan
,
B.
Thomas
,
B. A.
Weerdmeester
,
A. L.
McClelland
, eds.,
Taylor and Francis
,
London
, pp.
4
7
.
29.
Brooke
,
J.
,
2013
, “
SUS: A Retrospective
,”
J. Usability Stud.
,
8
(
2
), pp.
29
40
.
30.
Mukherjee
,
D.
,
Gupta
,
K.
,
Chang
,
L. H.
, and
Najjaran
,
H.
,
2022
, “
A Survey of Robot Learning Strategies for Human–Robot Collaboration in Industrial Settings
,”
Robotics and Computer-Integrated Manufacturing
, 73, Paper 102231.
31.
Lewis
,
J. R.
,
2018
, “
The System Usability Scale: Past, Present, and Future
,”
Int. J. Hum. Comput. Interact.
,
34
(
7
), pp.
577
590
.
32.
Amrehn
,
M.
,
Steidl
,
S.
,
Kortekaas
,
R.
,
Strumia
,
M.
,
Weingarten
,
M.
,
Kowarschik
,
M.
, and
Maier
,
A.
,
2019
, “
A Semi-Automated Usability Evaluation Framework for Interactive Image Segmentation Systems
,”
Int. J. Biomed. Imag.
,
2019
, p.
1464592
.
33.
Ponce
,
P.
,
Balderas
,
D.
,
Peffer
,
T.
, and
Molina
,
A.
,
2018
, “
Deep Learning for Automatic Usability Evaluations Based on Images: A Case Study of the Usability Heuristics of Thermostats
,”
Energy Build.
,
163
, pp.
111
120
.
34.
MacKenzie
,
I. S.
,
1992
, “
Fitts’ Law as a Research and Design Tool in Human–Computer Interaction
,”
Hum. Comput. Interact.
,
7
(
1
), pp.
91
139
.
35.
Wickens
,
C. D.
,
Gordon
,
S. E.
,
Liu
,
Y.
, and
Lee
,
J.
,
2004
,
An Introduction to Human Factors Engineering
(Vol. 2),
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
36.
Levy
,
P.
,
2013
, “
Beyond Kansei Engineering: The Emancipation of Kansei Design
,”
Int. J. Des.
,
7
(
2
), pp.
83
94
.
37.
Schütte
,
S. T. W.
,
Eklund
,
J.
,
Axelsson
,
J. R. C.
, and
Nagamachi
,
M.
,
2004
, “
Concepts, Methods and Tools in Kansei Engineering
,”
Theor. Iss. Ergonom. Sci.
,
5
(
3
), pp.
214
231
.
38.
Nakada
,
K.
,
1997
, “
Kansei Engineering Research on the Design of Construction Machinery
,”
Int. J. Ind. Ergonom.
,
19
(
2
), pp.
129
146
.
39.
Coronado
,
E.
,
Venture
,
G.
, and
Yamanobe
,
N.
,
2021
, “
Applying Kansei/Affective Engineering Methodologies in the Design of Social and Service Robots: A Systematic Review
,”
Int. J. Soc. Robot.
,
13
(
5
), pp.
1161
1171
.
40.
Mahajan
,
V.
, and
Muller
,
E.
,
1996
, “
Timing, Diffusion, and Substitution of Successive Generations of Technological Innovations: The IBM Mainframe Case
,”
Technol. Forecast. Soc. Change
,
51
(
2
), pp.
109
132
.
41.
Creusen
,
M. E.
,
2011
, “
Research Opportunities Related to Consumer Response to Product Design
,”
J. Prod. Innov. Manag.
,
28
(
3
), pp.
405
408
.
42.
Lewis
,
J. R.
,
2006
, “Usability Testing,”
Handbook of Human Factors and Ergonomics
,
G.
Salvendy
, ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
1275
1316
.
43.
Premalatha
,
G.
, and
Bai
,
V. T.
,
2022
, “
Design and Implementation of Intelligent Patient In-House Monitoring System Based on Efficient XGBoost-CNN Approach
,”
Cognit. Neurodyn.
,
16
(
5
), pp.
1135
1149
.
44.
Wessels
,
R.
,
Dijcks
,
B.
,
Soede
,
M.
,
Gelderblom
,
G. J.
, and
De Witte
,
L.
,
2003
, “
Non-use of Provided Assistive Technology Devices, a Literature Overview
,”
Technol. Disability
,
15
(
4
), pp.
231
238
.
45.
Clarkson
,
J.
,
Coleman
,
R.
,
Keates
,
S.
, and
Lebbon
,
C.
,
2003
,
Inclusive Design: Design for the Whole Population
, 1st ed.,
Springer
,
London
, p.
608
.
You do not currently have access to this content.