Abstract
Product sustainability is a pressing global issue that requires urgent improvement, and low-carbon design is a crucial approach toward achieving sustainable product development. Digital twin technology, which connects the physical and virtual worlds, has emerged as an effective tool for supporting product design and development. However, obtaining accurate product parameters remains a challenge, and traditional low-carbon product design primarily focuses on design parameters. To address these issues, this paper proposes a method for data collection throughout the product lifecycle, leveraging the Internet of Things. The paper envisions the automatic collection of product lifecycle data to enhance the accuracy of product design. Moreover, traditional low-carbon design often has a limited scope that primarily considers product structure and lifecycle stage for optimization. In contrast, combining digital twin technology with low-carbon design can effectively improve product sustainability. Therefore, this paper proposes a three-layer architecture model of product sustainability digital twin, comprising data layer, mapping layer, and application layer. This model sets the carbon footprint as the iterative optimization goal and facilitates the closed-loop sustainable design of the product. The paper envisions sustainable product design based on digital twins that can address cascading problems and achieve closed-loop sustainable design.