Abstract

In this work, the particle finite element method (PFEM) is extended to simulate additive manufacturing processes in a variety of different complicated geometries. A three-dimensional α-shape approach is used to carry out the material addition procedure. It overcomes the limitation of merely employing the traditional element birth and death technique and reduces the degrees-of-freedom compared to this technique. Furthermore, numerical examples are used to evaluate and demonstrate the applicability of the PFEM method for additive manufacturing within the framework of a weakly coupled thermoelasticity formulation. During additive manufacturing operations, deflections, stresses, and temperature are computed using a user-defined implementation in FEniCS.

References

1.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng. B. J. Manuf.
,
231
(
1
), pp.
96
117
.
2.
Körner
,
C.
,
Bauereiß
,
A.
, and
Attar
,
E.
,
2013
, “
Fundamental Consolidation Mechanisms During Selective Beam Melting of Powders
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
8
), p.
085011
.
3.
Bauereiß
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2522
2528
.
4.
Chen
,
T.
, and
Zhang
,
Y.
,
2004
, “
Numerical Simulation of Two-Dimensional Melting and Resolidification of a Two-Component Metal Powder Layer in Selective Laser Sintering Process
,”
Numerical Heat Transfer, Part A: Appl.
,
46
(
7
), pp.
633
649
.
5.
Dai
,
D.
, and
Gu
,
D.
,
2014
, “
Thermal Behavior and Densification Mechanism During Selective Laser Melting of Copper Matrix Composites: Simulation and Experiments
,”
Mater. Des.
,
55
, pp.
482
491
.
6.
Russell
,
M.
,
Souto-Iglesias
,
A.
, and
Zohdi
,
T.
,
2018
, “
Numerical Simulation of Laser Fusion Additive Manufacturing Processes Using the SPH Method
,”
Comput. Meth. Appl. Mech. Eng.
,
341
, pp.
163
187
.
7.
Parteli
,
E. J.
, and
Pöschel
,
T.
,
2016
, “
Particle-Based Simulation of Powder Application in Additive Manufacturing
,”
Powder Technol.
,
288
, pp.
96
102
.
8.
Chen
,
H.
,
Sun
,
Y.
,
Yuan
,
W.
,
Pang
,
S.
,
Yan
,
W.
, and
Shi
,
Y.
,
2022
, “
A Review on Discrete Element Method Simulation in Laser Powder Bed Fusion Additive Manufacturing
,”
Chin. J. Mech. Eng.: Additive Manuf. Frontiers
,
1
(
1
), p.
100017
.
9.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des. (1980–2015)
,
52
, pp.
638
647
.
10.
O nate
,
E.
,
Idelsohn
,
S. R.
,
Del Pin
,
F.
, and
Aubry
,
R.
,
2004
, “
The Particle Finite Element Method–An Overview
,”
Int. J. Comput. Meth.
,
1
(
2
), pp.
267
307
.
11.
Oliver
,
J.
,
Cante
,
J.
,
Weyler
,
R.
,
González
,
C.
, and
Hernández
,
J.
,
2007
, “Particle Finite Element Methods in Solid Mechanics Problems,”
Computational Plasticity
,
E.
Oñate
, and
R.
Owen
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
87
103
.
12.
Oñate
,
E.
,
Franci
,
A.
, and
Carbonell
,
J. M.
,
2014
, “
A Particle Finite Element Method for Analysis of Industrial Forming Processes
,”
Comput. Mech.
,
54
(
1
), pp.
85
107
.
13.
Rodríguez
,
J.
,
2014
, “Numerical Modeling of Metal Cutting Processes Using the Particle Finite Element Method (PFEM),” Universitat Politècnica de Catalunya (UPC), Barcelona.
14.
Rodriguez
,
J.
,
Carbonell
,
J. M.
,
Cante
,
J.
, and
Oliver
,
J.
,
2016
, “
The Particle Finite Element Method (PFEM) in Thermo-Mechanical Problems
,”
Int. J. Numer. Meth. Eng.
,
107
(
9
), pp.
733
785
.
15.
Rodríguez
,
J.
,
Jonsén
,
P.
, and
Svoboda
,
A.
,
2017
, “
Simulation of Metal Cutting Using the Particle Finite-Element Method and a Physically Based Plasticity Model
,”
Comput. Particle Mech.
,
4
(
1
), pp.
35
51
.
16.
Rodríguez
,
J. M.
,
Carbonell
,
J. M.
,
Cante
,
J.
, and
Oliver
,
J.
,
2017
, “
Continuous Chip Formation in Metal Cutting Processes Using the Particle Finite Element Method (PFEM)
,”
Int. J. Solids. Struct.
,
120
, pp.
81
102
.
17.
Rodríguez
,
J.
,
Carbonell
,
J.
, and
Jonsen
,
P.
,
2020
, “
Numerical Methods for the Modelling of Chip Formation
,”
Arch. Comput. Meth. Eng.
,
27
(
2
), pp.
387
412
.
18.
Rodriguez
,
J.
,
Larsson
,
S.
,
Carbonell
,
J.
, and
Jons’en
,
P.
,
2021
, “
Implicit Or Explicit Time Integration Schemes in the PFEM Modeling of Metal Cutting Processes
,”
Comput. Part. Mech.
,
9
(
4
), pp.
1
25
.
19.
Onate
,
E.
,
Rossi
,
R.
,
Idelsohn
,
S. R.
, and
Butler
,
K. M.
,
2010
, “
Melting and Spread of Polymers in Fire With the Particle Finite Element Method
,”
Int. J. Numer. Meth. Eng.
,
81
(
8
), pp.
1046
1072
.
20.
Onate
,
E.
,
Marti
,
J.
,
Ryzhakov
,
P.
,
Rossi
,
R.
, and
Idelsohn
,
S. R.
,
2017
, “
Analysis of the Melting, Burning and Flame Spread of Polymers With the Particle Finite Element Method
,”
Comput. Assist. Meth. Eng. Sci.
,
20
(
3
), pp.
165
184
.
21.
Yuan
,
W.-H.
,
Zhang
,
W.
,
Dai
,
B.
, and
Wang
,
Y.
,
2019
, “
Application of the Particle Finite Element Method for Large Deformation Consolidation Analysis
,”
Eng. Comput.
,
36
(
9
), pp.
3138
3163
.
22.
Zhang
,
X.
,
Krabbenhoft
,
K.
,
Pedroso
,
D.
,
Lyamin
,
A.
,
Sheng
,
D.
,
Da Silva
,
M. V.
, and
Wang
,
D.
,
2013
, “
Particle Finite Element Analysis of Large Deformation and Granular Flow Problems
,”
Comput. Geotechnics
,
54
, pp.
133
142
.
23.
Cante
,
J.
,
Davalos
,
C.
,
Hernandez
,
J.
,
Oliver
,
J.
,
Jonsén
,
P.
,
Gustafsson
,
G.
, and
Häggblad
,
H.-Å.
,
2014
, “
PFEM-Based Modeling of Industrial Granular Flows
,”
Comput. Part. Mech.
,
1
(
1
), pp.
47
70
.
24.
Dávalos
,
C.
,
Cante
,
J.
,
Hernández
,
J.
, and
Oliver
,
J.
,
2015
, “
On the Numerical Modeling of Granular Material Flows Via the Particle Finite Element Method (PFEM)
,”
Int. J. Solids Struct.
,
71
, pp.
99
125
.
25.
Reinold
,
J.
, and
Meschke
,
G.
,
2018
, “Particle Finite Element Simulation of Fresh Concrete for 3D Printing Applications,”
Forschungskolloquium 2018 Grasellenbach
,
J.
Schneider
, and
N.
Kiziltoprak
, eds.,
Springer Fachmedien Wiesbaden
,
Wiesbaden
, pp.
68
70
.
26.
Reinold
,
J.
,
Nerella
,
V.
,
Mechtcherine
,
V.
, and
Meschke
,
G.
,
2019
, “
Particle Finite Element Simulation of Extrusion Proceses of Fresh Concrete During 3D-Concrete-Printing
,”
Sim-AM 2019: II International Conference on Simulation for Additive Manufacturing
,
Pavia, Italy
,
Sept. 11–13
, CIMNE, pp.
428
439
.
27.
Reinold
,
J.
,
Nerella
,
V. N.
,
Mechtcherine
,
V.
, and
Meschke
,
G.
,
2022
, “
Extrusion Process Simulation and Layer Shape Prediction During 3D-Concrete-Printing Using the Particle Finite Element Method
,”
Autom. Constr.
,
136
, p.
104173
.
28.
Sabel
,
M.
,
Sator
,
C.
, and
Müller
,
R.
,
2014
, “
A Particle Finite Element Method for Machining Simulations
,”
Comput. Mech.
,
54
(
1
), pp.
123
131
.
29.
Lee
,
D.-T.
, and
Schachter
,
B. J.
,
1980
, “
Two Algorithms for Constructing a Delaunay Triangulation
,”
Int. J. Computer Inform. Sci.
,
9
(
3
), pp.
219
242
.
30.
Edelsbrunner
,
H.
, and
Mücke
,
E. P.
,
1994
, “
Three-Dimensional Alpha Shapes
,”
ACM Trans. Graphics (TOG)
,
13
(
1
), pp.
43
72
.
31.
Alnæs
,
M.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The Fenics Project Version 1.5
,”
Arch. Numer. Softw.
,
3
(
100
), pp.
9
23
.
32.
Luo
,
C.
,
Qiu
,
J.
,
Yan
,
Y.
,
Yang
,
J.
,
Uher
,
C.
, and
Tang
,
X.
,
2018
, “
Finite Element Analysis of Temperature and Stress Fields During the Selective Laser Melting Process of Thermoelectric SNTE
,”
J. Mater. Process. Technol.
,
261
, pp.
74
85
.
33.
Li
,
C.
,
Liu
,
Z.
,
Fang
,
X.
, and
Guo
,
Y.
,
2018
, “
Residual Stress in Metal Additive Manufacturing
,”
Procedia Cirp
,
71
, pp.
348
353
.
You do not currently have access to this content.