Abstract

Product assemblability and functional behavior are affected by geometric deviations. These deviations consist of manufacturing errors and part deformation defects caused by external loads. Taking the sources of deviations into account in tolerance analysis yields not only to more precise and reliable results but also to more complex tasks. In this context, the modeling of assembly parts with defects in a Digital MockUp (DMU) is quite promising. In this article, an integrated decision support tool is proposed to consider the causes of multiple defects, such as tolerances and external mechanical loads, in the tolerancing process. The worst-case concept and the small displacement torsor (SDT) are used to model rigid parts with orientation and positional defects. To model the part with form defects, random positions of each toleranced face points are determined using the Gaussian perturbation method (GPM) and considering the tolerance zone limits. A computer-aided design (CAD) method based on the B-spline interpolation allows the reconstruction of realistic surfaces of parts with form defects. Realistic configurations of nonrigid components subjected to external mechanical loads are determined using the finite element analysis (FEA). The realistic assembly configurations are performed by updating the mating constraints between planar and cylindrical parts. The proposed method considers all tolerance types on CAD models (positional, orientation, and form defects) and part deformations. The tolerance analysis is performed to check the compliance with the functional requirement (FR) and to correct the initial tolerance values. An industrial case study is used to validate the steps of the proposed tolerancing method.

References

1.
Oana
,
Ş
, and
Carmen
,
S.
,
2011
, “
Geometrical Product Specification—Perpendicularity Specification Assessment
,”
International Conference on Manufacturing Science and Education
,
Sibiu, Romania
, pp.
1
4
.
2.
Louhichi
,
B.
,
Tlija
,
M.
,
Benamara
,
A.
, and
Tahan
,
A.
,
2015
, “
An Algorithm for CAD Tolerancing Integration: Generation of Assembly Configurations According to Dimensional and Geometrical Tolerances
,”
Comput. Aided Des.
,
62
, pp.
259
274
.
3.
Adragna
,
P. A.
,
Samper
,
S.
, and
Favreliere
,
H.
,
2010
, “
How Form Errors Impact on 2D Precision Assembly With Clearance?
,”
IFIP Adv. Inf. Commun. Technol.
,
315
, pp.
50
59
.
4.
Beaucaire
,
P.
,
Gayton
,
N.
,
Duc
,
E.
, and
Dantan
,
J. Y.
,
2013
, “
Statistical Tolerance Analysis of a Mechanism With Gaps Based on System Reliability Methods
,”
Procedia CIRP
,
10
, pp.
2
8
.
5.
Grandjean
,
J.
,
Ledoux
,
Y.
, and
Samper
,
S.
,
2013
, “
On the Role of Form Defects in Assemblies Subject to Local Deformations and Mechanical Loads
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1769
1778
.
6.
Homri
,
L.
,
Dantan
,
J. Y.
, and
Levasseur
,
G.
,
2016
, “
Comparison of Optimization Techniques in a Tolerance Analysis Approach Considering Form Defects
,”
Procedia CIRP
,
43
, pp.
184
189
.
7.
Jbira
,
I.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
Tahan
,
A.
,
2017
, “
CAD/Tolerancing Integration: Mechanical Assembly With Form Defects
,”
Adv. Eng. Software
,
114
, pp.
312
324
.
8.
Korbi
,
A.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
Benamara
,
A.
,
2018
, “
A CAD Model for Tolerance Analysis of Non-Rigid Planar Parts Assemblies
,”
Procedia CIRP
,
70
, pp.
126
131
.
9.
Korbi
,
A.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
BenAmara
,
A.
,
2018
, “
CAD/Tolerancing Integration: A New Approach for Tolerance Analysis of Non-Rigid Parts Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5–8
), pp.
2003
2013
.
10.
Tlija
,
M.
,
Korbi
,
A.
,
Louhichi
,
B.
, and
Benamara
,
A.
,
2019
, “
A Novel Model for the Tolerancing of Nonrigid Part Assemblies in Computer Aided Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041008
.
11.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
12.
Prisco
,
U.
, and
Giorleo
,
G.
,
2002
, “
Overview of Current CAT Systems
,”
Integr. Comput. Aided Eng.
,
9
(
4
), pp.
373
387
.
13.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2015
, “
Tolerance Analysis by Polytopes: Taking Into Account Degrees of Freedom With Cap Half-Spaces
,”
Comput. Aided Des.
,
62
, pp.
112
130
.
14.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2013
, “
Tolerancing Analysis by Operations on Polytopes
,”
The Fifth International Conference Design and Modeling of Mechanical Systems, CMSM´2013
,
Djerba, Tunisia
,
Mar. 25–27
.
15.
Tlija
,
M.
,
Louhichi
,
B.
, and
Benamara
,
A.
,
2013
, “
Evaluating the Effect of Tolerances on the Functional Requirements of Assemblies
,”
Mech. Ind.
,
14
(
3
), pp.
191
206
.
16.
Li
,
H.
,
Zhu
,
H.
,
Li
,
P.
, and
He
,
F.
,
2014
, “
Tolerance Analysis of Mechanical Assemblies Based on Small Displacement Torsor and Deviation Propagation Theories
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1–4
), pp.
89
99
.
17.
Desrochers
,
A.
,
Ghie
,
W.
, and
Laperrière
,
L.
,
2003
, “
Application of a Unified Jacobian-Torsor Model for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
2
14
.
18.
Zhang
,
M.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Zhao
,
H. B.
,
2011
, “
A Discrete Geometry Framework for Geometrical Product Specifications
,”
Proceedings of the 21st CIRP Design Conference, Korea 2011: Interdisciplinary Design
,
KAIST, South Korea
,
Mar. 27–29
, pp.
142
148
.
19.
Pacella
,
M.
, and
Colosimo
,
B. M.
,
2013
, “
Different Formulations of Principal Component Analysis for 3D Profiles and Surfaces Modeling
,”
Procedia CIRP
,
12
, pp.
474
479
.
20.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2011
, “
Simulation of Variational Compliant Assemblies With Shape Errors Based on Morphing Mesh Approach
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
47
61
.
21.
Das
,
A.
,
Franciosa
,
P.
,
Williams
,
D.
, and
Ceglarek
,
D.
,
2016
, “
Physics-Driven Shape Variation Modelling at Early Design Stage
,”
Procedia CIRP
,
41
, pp.
1072
1077
.
22.
Wagersten
,
O.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
S¨oderberg
,
R.
,
2014
, “
Using Morphing Techniques in Early Variation Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p. 011007.
23.
Zhang
,
M.
,
Anwer
,
N.
,
Stockinger
,
A.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2013
, “
Discrete Shape Modeling for Skin Model Representation
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
227
(
5
), pp.
672
680
.
24.
Formosa
,
F.
, and
Samper
,
S.
,
2007
, “
Modal Expression of Form Defects
,”
The 9th CIRP International Seminar on Computer-Aided Tolerancing
,
Arizona State University, Tempe, AZ
,
Apr. 10–12
.
25.
Polini
,
W.
, and
Moroni
,
G.
,
2015
, “
Manufacturing Signature for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021005
.
26.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput. Aided Des.
,
50
, pp.
1
15
.
27.
Mollon
,
G.
, and
Zhao
,
J.
,
2014
, “
3D Generation of Realistic Granular Samples Based on Random Fields Theory and Fourier Shape Descriptors
,”
Comput. Methods Appl. Mech. Eng.
,
279
, pp.
46
65
.
28.
Liu
,
T.
,
Pierre
,
L.
,
Anwer
,
N.
,
Cao
,
Y.
, and
Yang
,
J.
,
2019
, “
Form Defects Consideration in Polytope-Based Tolerance Analysis
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061702
.
29.
Goka
,
E.
,
Homri
,
L.
,
Beaurepaire
,
P.
, and
Dantan
,
J. Y.
,
2019
, “
Statistical Tolerance Analysis of Over-Constrained Mechanical Assemblies With Form Defects Considering Contact Types
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p. 021010.
30.
,
H. N.
,
Ledoux
,
Y.
, and
Ballu
,
A.
,
2014
, “
Experimental and Theoretical Investigations of Mechanical Joints With Form Defects
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
041004
.
31.
Zhang
,
Z.
,
Liu
,
J.
,
Ding
,
X.
, and
Shao
,
N.
,
2018
, “
Tolerance Analysis of Annular Surfaces Considering Form Errors and Local Surface Deformations
,”
Procedia CIRP
,
75
, pp.
291
296
.
32.
Liu
,
J.
,
Zhang
,
Z.
,
Ding
,
X.
, and
Shao
,
N.
,
2018
, “
Integrating Form Errors and Local Surface Deformations Into Tolerance Analysis Based on Skin Model Shapes and a Boundary Element Method
,”
Comput. Aided Des.
,
104
, pp.
45
59
.
33.
Zhang
,
Z.
,
Liu
,
J.
,
Pierre
,
L.
, and
Anwer
,
N.
,
2021
, “
Polytope-Based Tolerance Analysis With Consideration of Form Defects and Surface Deformations
,”
Int. J. Comput. Integr. Manuf.
,
34
(
1
), pp.
57
75
.
34.
Fang
,
Y.
,
Jin
,
X.
,
Huang
,
C.
, and
Zhang
,
Z.
,
2017
, “
Entropy-Based Method for Evaluating Contact Strain-Energy Distribution for Assembly Accuracy Prediction
,”
Entropy
,
19
(
2
).
35.
Garaizar
,
O. R.
,
Qiao
,
L.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2016
, “
Integration of Thermal Effects Into Tolerancing Using Skin Model Shapes
,”
Procedia CIRP
,
43
, pp.
196
201
.
36.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2014
, “
Variational Tolerancing Analysis Taking Thermomechanical Strains Into Account: Application to a High Pressure Turbine
,”
Mech. Mach. Theory
,
74
, pp.
82
101
.
37.
Shao
,
N.
,
Ding
,
X.
, and
Liu
,
J.
,
2020
, “
Tolerance Analysis of Spur Gears Based on Skin Model Shapes and a Boundary Element Method
,”
Mech. Mach. Theory
,
144
, p.
103658
.
38.
Goic
,
G. L.
,
Favrelière
,
H.
,
Samper
,
S.
, and
Formosa
,
F.
,
2011
, “
Multi Scale Modal Decomposition of Primary Form, Waviness and Roughness of Surfaces
,”
Scanning
,
33
(
5
), pp.
332
341
.
39.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J. P.
,
2007
, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases
,”
The 9th CIRP International Seminar on Computer-Aided Tolerancing
,
Tempe, AZ
,
Apr. 10–12
, pp.
85
94
.
40.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
41.
Lahanas
,
M.
,
Kemmerer
,
T.
,
Milickovic
,
N.
,
Karouzakis
,
K.
,
Baltas
,
D.
, and
Zamboglou
,
L.
,
2002
, “
Optimized Bounding Boxes for Three-Dimensional Treatment Planning in Brachytherapy
,”
Med. Phys.
,
27
(
10
), pp.
2333
2342
.
42.
Jacquelin
,
J.
,
2011
,
3-D Linear Regression
, https://fr.scribd.com/ doc/31477970/Regressions-et-trajectoires-3D, Aaccessed December 12, 2019.
43.
Korbi
,
A.
,
Tlija
,
M.
, and
Louhichi
,
B.
,
2021
, “
Computer-Aided Design/ Tolerancing Integration: A Novel Tolerance Analysis Model of Assemblies With Composite Positional Defects and Deformations of Nonrigid Parts
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081012
.
You do not currently have access to this content.