Abstract

In recent years, identification of nonlinear dynamical systems from data has become increasingly popular. Sparse regression approaches, such as sparse identification of nonlinear dynamics (SINDy), fostered the development of novel governing equation identification algorithms assuming the state variables are known a priori and the governing equations lend themselves to sparse, linear expansions in a (nonlinear) basis of the state variables. In the context of the identification of governing equations of nonlinear dynamical systems, one faces the problem of identifiability of model parameters when state measurements are corrupted by noise. Measurement noise affects the stability of the recovery process yielding incorrect sparsity patterns and inaccurate estimation of coefficients of the governing equations. In this work, we investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements and numerically estimate the state-time derivatives to improve the accuracy and robustness of two sparse regression methods to recover governing equations: sequentially thresholded least squares (STLS) and weighted basis pursuit denoising (WBPDN) algorithms. We empirically show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point. We additionally compare generalized cross-validation (GCV) and Pareto curve criteria as model selection techniques to automatically estimate near optimal tuning parameters and conclude that Pareto curves yield better results. The performance of the denoising strategies and sparse regression methods is empirically evaluated through well-known benchmark problems of nonlinear dynamical systems.

References

1.
Fassois
,
S.
, and
Rivera
,
D.
,
2007
, “
Applications of System Identification
,”
IEEE Control Syst. Mag.
,
27
(
5
), pp.
24
26
.
2.
Leontaritis
,
I.
, and
Billings
,
S. A.
,
1985
, “
Input–Output Parametric Models for Non-linear Systems Part I: Deterministic Non-linear Systems
,”
Int. J. Control
,
41
(
2
), pp.
303
328
.
3.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.
4.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
24
), pp.
9943
9948
.
5.
Wang
,
W. X.
,
Yang
,
R.
,
Lai
,
Y. -C.
,
Kovanis
,
V.
, and
Grebogi
,
C.
,
2011
, “
Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing
,”
Phys. Rev. Lett.
,
106
(
15
), p.
154101
.
6.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
15
), pp.
3932
3937
.
7.
Goldberger
,
A. S.
,
1961
, “
Stepwise Least Squares: Residual Analysis and Specification Error
,”
J. Am. Stat. Assoc.
,
56
(
296
), pp.
998
1000
.
8.
Mallat
,
S. G.
, and
Zhang
,
Z.
,
1993
, “
Matching Pursuits With Time–Frequency Dictionaries
,”
IEEE Trans. Signal Process.
,
41
(
12
), pp.
3397
3415
.
9.
Pati
,
Y. C.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P. S.
,
1993
, “
Orthogonal Matching Pursuit: Recursive Function Approximation With Applications to Wavelet Decomposition
,”
Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
,
Nov. 1–3
, IEEE, pp.
40
44
.
10.
Needell
,
D.
, and
Tropp
,
J. A.
,
2009
, “
Cosamp: Iterative Signal Recovery From Incomplete and Inaccurate Samples
,”
Appl. Comput. Harmonic Anal.
,
26
(
3
), pp.
301
321
.
11.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
58
(
1
), pp.
267
288
.
12.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.
13.
Chen
,
S.
,
Donoho
,
D.
, and
Saunders
,
M.
,
2001
, “
Atomic Decomposition by Basis Pursuit
,”
SIAM Rev.
,
43
(
1
), pp.
129
159
.
14.
Bertsimas
,
D.
,
Pauphilet
,
J.
, and
Van Parys
,
B.
,
2020
, “
Sparse Regression: Scalable Algorithms and Empirical Performance
,”
Stat. Sci.
,
35
(
4
), pp.
555
578
.
15.
Champion
,
K.
,
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2019
, “
Data-Driven Discovery of Coordinates and Governing Equations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
45
), pp.
22445
22451
.
16.
Fukami
,
K.
,
Murata
,
T.
,
Zhang
,
K.
, and
Fukagata
,
K.
,
2021
, “
Sparse Identification of Nonlinear Dynamics With Low-Dimensionalized Flow Representations
,”
J. Fluid Mech.
,
926
, pp.
1
35
.
17.
Gelß
,
P.
,
Klus
,
S.
,
Eisert
,
J.
, and
Schütte
,
C.
,
2019
, “
Multidimensional Approximation of Nonlinear Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061006
.
18.
Rudy
,
S. H.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2019
, “
Deep Learning of Dynamics and Signal-Noise Decomposition With Time-Stepping Constraints
,”
J. Comput. Phys.
,
396
, pp.
483
506
.
19.
Kaheman
,
K.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2020
, “
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics and Extract Noise Probability Distributions From Data
,” arXiv preprint arXiv:2009.08810.
20.
Sun
,
F.
,
Liu
,
Y.
,
Sun
,
H.
, and
Zhou
,
Z.-H.
,
2021
, “
Physics-Informed Spline Learning for Nonlinear Dynamics Discovery
,”
30th International Joint Conference on Artificial Intelligence (IJCAI-21)
,
Montreal, Canada
,
Aug. 19–27
,
Z.-H.
Zhou
, ed., IJCAI, pp.
2054
2061
.
21.
Chen
,
Z.
,
Liu
,
Y.
, and
Sun
,
H.
,
2021
, “
Physics-Informed Learning of Governing Equations From Scarce Data
,”
Nat. Commun.
,
12
(
1
), pp.
1
13
.
22.
Cullum
,
J.
,
1971
, “
Numerical Differentiation and Regularization
,”
SIAM J. Numer. Anal.
,
8
(
2
), pp.
254
265
.
23.
Lu
,
S.
, and
Pereverzev
,
S.
,
2006
, “
Numerical Differentiation From a Viewpoint of Regularization Theory
,”
Math. Comput.
,
75
(
256
), pp.
1853
1870
.
24.
Chartrand
,
R.
,
2011
, “
Numerical Differentiation of Noisy, Nonsmooth Data
,”
ISRN Appl. Math.
,
2011
, pp.
1
11
.
25.
Green
,
P. J.
, and
Silverman
,
B. W.
,
1993
,
Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach
,
Chapman and Hall/CRC
,
London, UK
.
26.
Bowman
,
A. W.
, and
Azzalini
,
A.
,
1997
,
Applied Smoothing Techniques for Data Analysis: The Kernel Approach With S-Plus Illustrations
, Vol.
18
,
Oxford University Press
,
Oxford
.
27.
Aydin
,
D.
,
2007
, “
A Comparison of the Nonparametric Regression Models Using Smoothing Spline and Kernel Regression
,”
World Acad. Sci. Eng. Technol.
,
1
(
12
), pp.
253
257
.
28.
Knowles
,
I.
, and
Renka
,
R. J.
,
2014
, “
Methods for Numerical Differentiation of Noisy Data
,”
Electron. J. Differ. Equ.
,
21
, pp.
235
246
. https://ejde.math.txstate.edu/
29.
Ahnert
,
K.
, and
Abel
,
M.
,
2007
, “
Numerical Differentiation of Experimental Data: Local Versus Global Methods
,”
Comput. Phys. Commun.
,
177
(
10
), pp.
764
774
.
30.
Lubansky
,
A.
,
Yeow
,
Y. L.
,
Leong
,
Y.-K.
,
Wickramasinghe
,
S. R.
, and
Han
,
B.
,
2006
, “
A General Method of Computing the Derivative of Experimental Data
,”
AIChE J.
,
52
(
1
), pp.
323
332
.
31.
Fan
,
J.
, and
Gijbels
,
I.
,
1996
,
Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability
, Vol.
66
,
Chapman and Hall/CRC
,
London, UK
.
32.
Loader
,
C.
,
2006
,
Local Regression and Likelihood
,
Springer Science & Business Media
,
New York
.
33.
De Boor
,
C.
,
1978
,
A Practical Guide to Splines
, Vol.
27
,
Springer-Verlag
,
New York
.
34.
Tikhonov
,
A. N.
,
Goncharsky
,
A.
,
Stepanov
,
V.
, and
Yagola
,
A. G.
,
2013
,
Numerical Methods for the Solution of Ill-Posed Problems
, Vol.
328
,
Springer Science & Business Media
,
New York
.
35.
Hodrick
,
R. J.
, and
Prescott
,
E. C.
,
1997
, “
Postwar us Business Cycles: An Empirical Investigation
,”
J. Money Credit Bank.
,
29
(
1
), pp.
1
16
.
36.
Rudin
,
L. I.
,
Osher
,
S.
, and
Fatemi
,
E.
,
1992
, “
Nonlinear Total Variation Based Noise Removal Algorithms
,”
Physica D
,
60
(
1–4
), pp.
259
268
.
37.
Chambolle
,
A.
,
2004
, “
An Algorithm for Total Variation Minimization and Applications
,”
J. Math. Imag. Vis.
,
20
(
1–2
), pp.
89
97
.
38.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
,
Cambridge, UK
.
39.
Mallat
,
S. G.
,
1989
, “
A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
11
(
7
), pp.
674
693
.
40.
Donoho
,
D. L.
, and
Johnstone
,
I. M.
,
1995
, “
Adapting to Unknown Smoothness Via Wavelet Shrinkage
,”
J. Am. Stat. Assoc.
,
90
(
432
), pp.
1200
1224
.
41.
Elsner
,
J. B.
, and
Tsonis
,
A. A.
,
2013
,
Singular Spectrum Analysis: A New Tool in Time Series Analysis
,
Springer Science & Business Media
,
New York
.
42.
Golyandina
,
N.
, and
Zhigljavsky
,
A.
,
2013
,
Singular Spectrum Analysis for Time Series
,
Springer
,
Berlin/Heidelberg
.
43.
Zhu
,
W.
,
Mousavi
,
S. M.
, and
Beroza
,
G. C.
,
2019
, “
Seismic Signal Denoising and Decomposition Using Deep Neural Networks
,”
IEEE Trans. Geosci. Remote Sens.
,
57
(
11
), pp.
9476
9488
.
44.
Antczak
,
K.
,
2018
, “
Deep Recurrent Neural Networks for ECG Signal Denoising
,” arXiv preprint arXiv:1807.11551.
45.
Fan
,
G.
,
Li
,
J.
, and
Hao
,
H.
,
2020
, “
Vibration Signal Denoising for Structural Health Monitoring by Residual Convolutional Neural Networks
,”
Measurement
,
157
, p.
107651
.
46.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York
.
47.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.
48.
Schwarz
,
G.
,
1978
, “
Estimating the Dimension of a Model
,”
Ann. Stat.
,
6
(
2
), pp.
461
464
.
49.
Mallows
,
C. L.
,
2000
, “
Some Comments on CP
,”
Technometrics
,
42
(
1
), pp.
87
94
.
50.
Morozov
,
V. A.
,
1966
, “
On the Solution of Functional Equations by the Method of Regularization
,”
Dokl. Akad. Nauk
,
167
(
3
), pp.
510
512
. http://mi.mathnet.ru/eng/dan/v167/i3/p510
51.
Morozov
,
V. A.
,
2012
,
Methods for Solving Incorrectly Posed Problems
,
Springer
,
New York
.
52.
Stone
,
M.
,
1974
, “
Cross-Validatory Choice and Assessment of Statistical Predictions
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
36
(
2
), pp.
111
133
.
53.
Golub
,
G. H.
,
Heath
,
M.
, and
Wahba
,
G.
,
1979
, “
Generalized Cross-Validation As a Method for Choosing a Good Ridge Parameter
,”
Technometrics
,
21
(
2
), pp.
215
223
.
54.
Hansen
,
P. C.
,
1992
, “
Analysis of Discrete Ill-Posed Problems by Means of the L-Curve
,”
SIAM Rev.
,
34
(
4
), pp.
561
580
.
55.
Hansen
,
P. C.
,
1999
, “The L-Curve and Its Use in the Numerical Treatment of Inverse Problems,”
Computational Inverse Problems in Electrocardiology
,
WIT Press
,
Southampton, UK
, pp.
119
142
.
56.
D’Amico
,
M.
, and
Ferrigno
,
G.
,
1992
, “
Comparison Between the More Recent Techniques for Smoothing and Derivative Assessment in Biomechanics
,”
Med. Biol. Eng. Comput.
,
30
(
2
), pp.
193
204
.
57.
Stickel
,
J. J.
,
2010
, “
Data Smoothing and Numerical Differentiation by a Regularization Method
,”
Comput. Chem. Eng.
,
34
(
4
), pp.
467
475
.
58.
Morelli
,
E. A.
, and
Klein
,
V.
,
2016
,
Aircraft System Identification: Theory and Practice
, Vol.
2
,
Sunflyte Enterprises
,
Williamsburg, VA
.
59.
Jategaonkar
,
R. V.
,
2006
,
Flight Vehicle System Identification: A Time Domain Methodology
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
60.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1980
, “
An Analysis of the Total Least Squares Problem
,”
SIAM J. Numer. Anal.
,
17
(
6
), pp.
883
893
.
61.
Van Huffel
,
S.
, and
Vandewalle
,
J.
,
1991
,
The Total Least Squares Problem: Computational Aspects and Analysis
,
SIAM
,
Philadelphia, PA
.
62.
Natarajan
,
B. K.
,
1995
, “
Sparse Approximate Solutions to Linear Systems
,”
SIAM J. Comput.
,
24
(
2
), pp.
227
234
.
63.
Eldar
,
Y. C.
, and
Kutyniok
,
G.
,
2012
,
Compressed Sensing: Theory and Applications
,
Cambridge University Press
,
Cambridge, UK
.
64.
Cortiella
,
A.
,
Park
,
K.-C.
, and
Doostan
,
A.
,
2021
, “
Sparse Identification of Nonlinear Dynamical Systems Via Reweighted ℓ1-Regularized Least Squares
,”
Comput. Methods Appl. Mech. Eng.
,
376
, p.
113620
.
65.
Candès
,
E. J.
,
2008
, “
The Restricted Isometry Property and Its Implications for Compressed Sensing
,”
C. R. Math.
,
346
(
9
), pp.
589
592
.
66.
Zhang
,
L.
, and
Schaeffer
,
H.
,
2019
, “
On the Convergence of the Sindy Algorithm
,”
Multiscale Model. Simul.
,
17
(
3
), pp.
948
972
.
67.
Zou
,
H.
,
2006
, “
The Adaptive Lasso and Its Oracle Properties
,”
J. Am. Stat. Assoc.
,
101
(
476
), pp.
1418
1429
.
68.
Candès
,
E. J.
,
Wakin
,
M. B.
, and
Boyd
,
S. P.
,
2008
, “
Enhancing Sparsity by Reweighted ℓ1 Minimization
,”
J. Fourier Anal. Appl.
,
14
(
5
), pp.
877
905
.
69.
Yang
,
X.
, and
Karniadakis
,
G. E.
,
2013
, “
Reweighted ℓ1 Minimization Method for Stochastic Elliptic Differential Equations
,”
J. Comput. Phys.
,
248
, pp.
87
108
.
70.
Peng
,
J.
,
Hampton
,
J.
, and
Doostan
,
A.
,
2014
, “
A Weighted ℓ1-Minimization Approach for Sparse Polynomial Chaos Expansions
,”
J. Comput. Phys.
,
267
, pp.
92
111
.
71.
Adcock
,
B.
,
2017
, “
Infinite-Dimensional ℓ1 Minimization and Function Approximation From Pointwise Data
,”
Constr. Approx.
,
45
(
3
), pp.
345
390
.
72.
Donoho
,
D.
,
Drori
,
I.
,
Stodden
,
V.
, and
Tsaig
,
Y.
,
2019
, “
Sparselab: Seeking Sparse Solutions to Linear Systems of Equations
,” 2007-05-26[2013-01-27]. http://sparselab.stanford.edu
73.
Van den Berg
,
E.
, and
Friedlander
,
M.
,
2019
,
SPGL1: A Solver for Large-Scale Sparse Reconstruction
,
December
. https://friedlander.io/spgl1
74.
Grant
,
M.
, and
Boyd
,
S.
,
2014
,
Cvx: Matlab Software for Disciplined Convex Programming, Version 2.1
.
75.
Diamond
,
S.
, and
Boyd
,
S.
,
2016
, “
Cvxpy: A Python-Embedded Modeling Language for Convex Optimization
,”
J. Mach. Learn. Res.
,
17
(
1
), pp.
2909
2913
.
76.
Lancaster
,
P.
, and
Salkauskas
,
K.
,
1981
, “
Surfaces Generated by Moving Least Squares Methods
,”
Math. Comput.
,
37
(
155
), pp.
141
158
.
77.
Sober
,
B.
, and
Levin
,
D.
,
2019
, “
Manifold Approximation by Moving Least-Squares Projection (MMLS)
,”
Constr. Approx.
,
52
, pp.
1
46
.
78.
Sober
,
B.
,
Aizenbud
,
Y.
, and
Levin
,
D.
,
2021
, “
Approximation of Functions Over Manifolds: A Moving Least-Squares Approach
,”
J. Comput. Appl. Math.
,
383
, p.
113140
.
79.
Carr
,
J. C.
,
Beatson
,
R. K.
,
McCallum
,
B. C.
,
Fright
,
W. R.
,
McLennan
,
T. J.
, and
Mitchell
,
T. J.
,
2003
, “
Smooth Surface Reconstruction From Noisy Range Data
,”
Proceedings of the First International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia
,
Melbourne, Australia
,
Feb. 11–14
, pp.
119
126
.
80.
Cleveland
,
W. S.
,
1979
, “
Robust Locally Weighted Regression and Smoothing Scatterplots
,”
J. Am. Stat. Assoc.
,
74
(
368
), pp.
829
836
.
81.
Epanechnikov
,
V. A.
,
1969
, “
Non-parametric Estimation of a Multivariate Probability Density
,”
Theory Probab. Appl.
,
14
(
1
), pp.
153
158
.
82.
Fan
,
J.
, and
Gijbels
,
I.
,
1995
, “
Data-Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation
,”
J. R. Stat. Soc.: Ser. B (Methodol.)
,
57
(
2
), pp.
371
394
.
83.
Fan
,
J.
, and
Gijbels
,
I.
,
1995
, “
Adaptive Order Polynomial Fitting: Bandwidth Robustification and Bias Reduction
,”
J. Comput. Graph. Stat.
,
4
(
3
), pp.
213
227
.
84.
Savitzky
,
A.
, and
Golay
,
M. J.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
85.
Cleveland
,
W. S.
, and
Devlin
,
S. J.
,
1988
, “
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
,”
J. Am. Stat. Assoc.
,
83
(
403
), pp.
596
610
.
86.
Schafer
,
R. W.
,
2011
, “
What is a Savitzky–Golay Filter?[Lecture Notes]
,”
IEEE Signal Process. Mag.
,
28
(
4
), pp.
111
117
.
87.
Fan
,
J.
,
Gijbels
,
I.
,
Hu
,
T.-C.
, and
Huang
,
L.-S.
,
1996
, “
A Study of Variable Bandwidth Selection for Local Polynomial Regression
,”
Stat. Sinica
,
6
(
1
), pp.
113
127
. https://www.jstor.org/stable/24306002
88.
Kim
,
S.-J.
,
Koh
,
K.
,
Boyd
,
S.
, and
Gorinevsky
,
D.
,
2009
, “
ℓ_1 Trend Filtering
,”
SIAM Rev.
,
51
(
2
), pp.
339
360
.
89.
Kim
,
S.
,
Koh
,
K.
,
Lustig
,
M.
,
Boyd
,
S.
, and
Gorinevsky
,
D.
,
2007
, “
An Interior-Point Method for Large-Scale ℓ1-Regularized Least Squares
,”
IEEE J. Sel. Top. Signal Process.
,
1
(
4
), pp.
606
617
.
90.
Tibshirani
,
R. J.
,
2014
, “
Adaptive Piecewise Polynomial Estimation Via Trend Filtering
,”
Ann. Stat.
,
42
(
1
), pp.
285
323
.
91.
Mammen
,
E.
, and
van de Geer
,
S.
,
1997
, “
Locally Adaptive Regression Splines
,”
Ann. Stat.
,
25
(
1
), pp.
387
413
.
92.
Tibshirani
,
R.
,
Saunders
,
M.
,
Rosset
,
S.
,
Zhu
,
J.
, and
Knight
,
K.
,
2005
, “
Sparsity and Smoothness Via the Fused Lasso
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
67
(
1
), pp.
91
108
.
93.
Tibshirani
,
R. J.
, and
Taylor
,
J.
,
2011
, “
The Solution Path of the Generalized Lasso
,”
Ann. Stat.
,
39
(
3
), pp.
1335
1371
.
94.
Ramdas
,
A.
, and
Tibshirani
,
R. J.
,
2016
, “
Fast and Flexible Admm Algorithms for Trend Filtering
,”
J. Comput. Graph. Stat.
,
25
(
3
), pp.
839
858
.
95.
Ding
,
J.
,
Tarokh
,
V.
, and
Yang
,
Y.
,
2018
, “
Model Selection Techniques: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
6
), pp.
16
34
.
96.
Hansen
,
P. C.
,
2010
,
Discrete Inverse Problems: Insight and Algorithms
,
SIAM
,
Philadelphia, PA
.
97.
Ramsay
,
J. O.
, and
Silverman
,
B. W.
,
2005
,
Functional Data Analysis
, Vol.
4
,
Springer New York
.
98.
Gu
,
C.
,
2013
,
Smoothing Spline ANOVA Models
, Vol.
297
,
Springer
,
New York
.
99.
Zou
,
H.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2007
, “
On the ‘Degrees of Freedom’ of the Lasso
,”
Ann. Stat.
,
35
(
5
), pp.
2173
2192
.
100.
Wahba
,
G.
,
1990
,
Spline Models for Observational Data
,
SIAM
,
Philadelphia, PA
.
101.
Jansen
,
M.
,
2015
, “
Generalized Cross Validation in Variable Selection With and Without Shrinkage
,”
J. Stat. Plann. Inference
,
159
, pp.
90
104
.
102.
Van Den Berg
,
E.
, and
Friedlander
,
M. P.
,
2009
, “
Probing the Pareto Frontier for Basis Pursuit Solutions
,”
SIAM J. Sci. Comput.
,
31
(
2
), pp.
890
912
.
103.
Hansen
,
P. C.
,
Jensen
,
T. K.
, and
Rodriguez
,
G.
,
2007
, “
An Adaptive Pruning Algorithm for the Discrete L-Curve Criterion
,”
J. Comput. Appl. Math.
,
198
(
2
), pp.
483
492
.
104.
Cultrera
,
A.
, and
Callegaro
,
L.
,
2020
, “
A Simple Algorithm to Find the L-Curve Corner in the Regularisation of Ill-Posed Inverse Problems
,”
IOP SciNotes
,
1
(
2
), p.
025004
.
105.
Léger
,
J.-C.
,
1999
, “
Menger Curvature and Rectifiability
,”
Ann. Math.
,
149
(
3
), pp.
831
869
.
106.
Hanke
,
M.
,
1996
, “
Limitations of the L-Curve Method in Ill-Posed Problems
,”
BIT Numer. Math.
,
36
(
2
), pp.
287
301
.
107.
Vogel
,
C. R.
,
1996
, “
Non-convergence of the L-Curve Regularization Parameter Selection Method
,”
Inverse Prob.
,
12
(
4
), p.
535
.
108.
Regińska
,
T.
,
1996
, “
A Regularization Parameter in Discrete Ill-Posed Problems
,”
SIAM J. Sci. Comput.
,
17
(
3
), pp.
740
749
.
109.
Timmer
,
J.
, and
Koenig
,
M.
,
1995
, “
On Generating Power Law Noise
,”
Astron. Astrophys.
,
300
, p.
707
.
110.
Kariya
,
T.
, and
Kurata
,
H.
,
2004
,
Generalized Least Squares
,
John Wiley & Sons
,
Chichester, UK
.
111.
Donoho
,
D. L.
,
Stodden
,
V. C.
, and
Tsaig
,
Y.
,
2007
,
About SparseLab
.
112.
Lorenz
,
E. N.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(
2
), pp.
130
141
.
113.
Little
,
A. V.
,
Maggioni
,
M.
, and
Rosasco
,
L.
,
2017
, “
Multiscale Geometric Methods for Data Sets I: Multiscale SVD, Noise and Curvature
,”
Appl. Comput. Harmonic Anal.
,
43
(
3
), pp.
504
567
.
114.
Duffing
,
G.
,
1918
, “Forced Oscillations With Variable Natural Frequency and Their Technical Relevance,” Heft 41/42,
Vieweg
,
Braunschweig
.
115.
Van der Pol
,
B.
,
1920
, “
A Theory of the Amplitude of Free and Forced Triode Vibrations
,”
Radio Rev.
,
1
, pp.
701
710
, 754–762.
116.
Schaeffer
,
H.
, and
McCalla
,
S. G.
,
2017
, “
Sparse Model Selection Via Integral Terms
,”
Phys. Rev. E
,
96
(
2
), p.
023302
.
117.
Messenger
,
D. A.
, and
Bortz
,
D. M.
,
2021
, “
Weak Sindy: Galerkin-Based Data-Driven Model Selection
,”
Multiscale Model. Simul.
,
19
(
3
), pp.
1474
1497
.
118.
Messenger
,
D. A.
, and
Bortz
,
D. M.
,
2021
, “
Weak Sindy for Partial Differential Equations
,”
J. Comput. Phys.
,
443
, p.
110525
.
You do not currently have access to this content.