Abstract

This article presents a framework that mathematically models optimal design synthesis as a Markov Decision Process (MDP) that is solved with reinforcement learning. In this context, the states correspond to specific design configurations, the actions correspond to the available alterations modeled after generative design grammars, and the immediate rewards are constructed to be related to the improvement in the altered configuration’s performance with respect to the design objective. Since in the context of optimal design synthesis the immediate rewards are in general not known at the onset of the process, reinforcement learning is employed to efficiently solve the MDP. The goal of the reinforcement learning agent is to maximize the cumulative rewards and hence synthesize the best performing or optimal design. The framework is demonstrated for the optimization of planar trusses with binary cross-sectional areas, and its utility is investigated with four numerical examples, each with a unique combination of domain, constraint, and external force(s) considering both linear-elastic and elastic-plastic material behaviors. The design solutions obtained with the framework are also compared with other methods in order to demonstrate its efficiency and accuracy.

References

1.
Antonsson
,
E. K.
, and
Cagan
,
J.
,
2005
,
Formal Engineering Design Synthesis
,
Cambridge University Press
,
Cambridge, UK
.
2.
Chakrabarti
,
A.
,
2013
,
Engineering Design Synthesis: Understanding, Approaches and Tools
,
Springer Science & Business Media
,
New York
.
3.
Campbell
,
M. I.
, and
Shea
,
K.
,
2014
, “
Computational Design Synthesis
,”
AI EDAM
,
28
(
3
), pp.
207
208
.
4.
Hooshmand
,
A.
, and
Campbell
,
M. I.
,
2016
, “
Truss Layout Design and Optimization Using a Generative Synthesis Approach
,”
Comput. Struct.
,
163
, pp.
1
28
.
5.
Cagan
,
J.
,
Campbell
,
M. I.
,
Finger
,
S.
, and
Tomiyama
,
T.
,
2005
, “
A Framework for Computational Design Synthesis: Model and Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
171
181
.
6.
Swantner
,
A.
, and
Campbell
,
M. I.
,
2012
, “
Topological and Parametric Optimization of Gear Trains
,”
Eng. Optim.
,
44
(
11
), pp.
1351
1368
.
7.
Shea
,
K.
, and
Cagan
,
J.
,
1997
, “
Innovative Dome Design: Applying Geodesic Patterns With Shape Annealing
,”
AI EDAM
,
11
(
5
), pp.
379
394
.
8.
Lin
,
Y.-C.
,
Shea
,
K.
,
Johnson
,
A.
,
Coultate
,
J.
, and
Pears
,
J.
,
2009
, “
A Method and Software Tool for Automated Gearbox Synthesis
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, Vol. 49026, pp.
111
121
.
9.
Puentes
,
L.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Heuristic-Guided Solution Search Through a Two-Tiered Design Grammar
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011008
.
10.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
,
2002
, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
492
500
.
11.
Königseder
,
C.
,
Shea
,
K.
, and
Campbell
,
M. I.
,
2013
, “
Comparing a Graph-Grammar Approach to Genetic Algorithms for Computational Synthesis of PV Arrays
,”
CIRP Design 2012
,
Bangalore, India
,
Mar. 28–31
, Springer, pp.
105
114
.
12.
Vale
,
C. A.
, and
Shea
,
K.
,
2003
, “
A Machine Learning-Based Approach to Accelerating Computational Design Synthesis
,”
DS 31: Proceedings of ICED 03, the 14th International Conference on Engineering Design
,
Stockholm
, Sweden,
Aug. 19-21
.
13.
Burnap
,
A.
,
Liu
,
Y.
,
Pan
,
Y.
,
Lee
,
H.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
,
2016
, “
Estimating and Exploring the Product Form Design Space Using Deep Generative Models
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
.
14.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
Generative Adversarial Networks for Increasing the Veracity of Big Data
,”
2017 IEEE International Conference on Big Data
,
Boston, MA
,
Dec. 11–14
, IEEE, pp.
2595
2602
.
15.
Dering
,
M. L.
, and
Tucker
,
C. S.
,
2017
, “
Implications of Generative Models in Government
,”
2017 AAAI Fall Symposium Series
,
Arlington, VA
,
Nov. 9–11
.
16.
Shu
,
D.
,
Cunningham
,
J.
,
Stump
,
G.
,
Miller
,
S. W.
,
Yukish
,
M. A.
,
Simpson
,
T. W.
, and
Tucker
,
C. S.
,
2020
, “
3d Design Using Generative Adversarial Networks and Physics-Based Validation
,”
ASME J. Mech. Des.
,
142
(
7
), p.
071701
.
17.
Yu
,
Y.
,
Hur
,
T.
,
Jung
,
J.
, and
Jang
,
I. G.
,
2019
, “
Deep Learning for Determining a Near-Optimal Topological Design Without Any Iteration
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
787
799
.
18.
Jang
,
S.
,
Yoo
,
S.
, and
Kang
,
N.
,
2020
, “
Generative Design by Reinforcement Learning: Enhancing the Diversity of Topology Optimization Designs
,” arXiv preprint arXiv:2008.07119.
19.
Sun
,
H.
, and
Ma
,
L.
,
2020
, “
Generative Design by Using Exploration Approaches of Reinforcement Learning in Density-Based Structural Topology Optimization
,”
Designs
,
4
(
2
), p.
10
.
20.
Hayashi
,
K.
, and
Ohsaki
,
M.
,
2020
, “
Reinforcement Learning and Graph Embedding for Binary Truss Topology Optimization Under Stress and Displacement Constraints
,”
Front. Built Environ.
,
6
, p.
59
.
21.
Dorn
,
W. S.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
,
1964
, “
Automatic Design of Optimal Structures
,”
J. Mec.
,
3
(
1
), pp.
25
52
.
22.
Watkins
,
C. J.
, and
Dayan
,
P.
,
1992
, “
Q-learning
,”
Mach. Learn.
,
8
(
3–4
), pp.
279
292
.
23.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
24.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
25.
Kaelbling
,
L. P.
,
Littman
,
M. L.
, and
Moore
,
A. W.
,
1996
, “
Reinforcement Learning: A Survey
,”
J. Artif. Intell. Res.
,
4
, pp.
237
285
.
26.
Lipson
,
H.
,
2008
, “
Evolutionary Synthesis of Kinematic Mechanisms
,”
AI EDAM
,
22
(
3
), pp.
195
205
.
27.
Christensen
,
P. W.
, and
Klarbring
,
A.
,
2008
,
An Introduction to Structural Optimization
, Vol.
153
,
Springer Science & Business Media
,
New York
.
28.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
New York
.
29.
Rozvany
,
G. I.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
217
237
.
30.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
31.
Achtziger
,
W.
, and
Stolpe
,
M.
,
2008
, “
Global Optimization of Truss Topology With Discrete Bar Areas—Part I: Theory of Relaxed Problems
,”
Computat. Optim. Appl.
,
40
(
2
), pp.
247
280
.
32.
Achtziger
,
W.
, and
Stolpe
,
M.
,
2009
, “
Global Optimization of Truss Topology With Discrete Bar Areas—Part II: Implementation and Numerical Results
,”
Computat. Optim. Appl.
,
44
(
2
), p.
315
.
33.
Stolpe
,
M.
,
2015
, “
Truss Topology Optimization With Discrete Design Variables by Outer Approximation
,”
J. Global Optim.
,
61
(
1
), pp.
139
163
.
34.
Kaveh
,
A.
, and
Talatahari
,
S.
,
2009
, “
Particle Swarm Optimizer, Ant Colony Strategy and Harmony Search Scheme Hybridized for Optimization of Truss Structures
,”
Comput. Struct.
,
87
(
5–6
), pp.
267
283
.
35.
Li
,
L.
,
Huang
,
Z.
, and
Liu
,
F.
,
2009
, “
A Heuristic Particle Swarm Optimization Method for Truss Structures With Discrete Variables
,”
Comput. Struct.
,
87
(
7–8
), pp.
435
443
.
36.
Kripka
,
M.
,
2004
, “
Discrete Optimization of Trusses by Simulated Annealing
,”
J. Braz. Soc. Mech. Sci. Eng.
,
26
(
2
), pp.
170
173
.
37.
Kaveh
,
A.
, and
Kalatjari
,
V.
,
2003
, “
Topology Optimization of Trusses Using Genetic Algorithm, Force Method and Graph Theory
,”
Int. J. Numer. Methods Eng.
,
58
(
5
), pp.
771
791
.
38.
Wu
,
S.-J.
, and
Chow
,
P.-T.
,
1994
, “
Genetic Algorithms for Solving Mixed-Discrete Optimization Problems
,”
J. Franklin Inst.
,
331
(
4
), pp.
381
401
.
39.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
5
), pp.
589
596
.
40.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1995
,
Optimization of Structural Topology, Shape, and Material
, Vol.
414
,
Springer
,
New York
.
41.
Stromberg
,
L. L.
,
Beghini
,
A.
,
Baker
,
W. F.
, and
Paulino
,
G. H.
,
2012
, “
Topology Optimization for Braced Frames: Combining Continuum and Beam/Column Elements
,”
Eng. Struct.
,
37
, pp.
106
124
.
42.
Stolpe
,
M.
,
2016
, “
Truss Optimization With Discrete Design Variables: A Critical Review
,”
Struct. Multidiscipl. Optim.
,
53
(
2
), pp.
349
374
.
43.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Klaus-Jurgen Bathe
,
Watertown, MA
.
44.
Mazzoni
,
S.
,
McKenna
,
F.
,
Scott
,
M. H.
, and
Fenves
,
G. L.
,
2006
, “
Opensees Command Language Manual
,”
Pac. Earthq. Eng. Res. (PEER) Center
, p.
264
.
45.
Ororbia
,
M. E.
, and
Warn
,
G. P.
,
2020
, “
Structural Design Synthesis Through a Sequential Decision Process
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
.
You do not currently have access to this content.