Abstract

To appropriately leverage the benefits of additive manufacturing (AM), it would be advantageous if a printing could be guaranteed before allocating the necessary resources. Furthermore, when considering AM for an inventory of existing components traditionally fabricated through traditional means, such a guarantee could result in significant technical and economic advantages. To realize such advantages, this paper presents a platform that allows for a successful and efficient transition of part-inventories to AM. This is accomplished using a novel design recommender system supported by machine learning, capable of making suggestions towards effective design modifications. This system uses an automatic AM feasibility analysis of existing parts and a clustering of the parts based on similarities in their AM-feasibilities to develop a set of recommendations for those part clusters whose current designs are deemed as infeasible and/or inefficient for AM. The design modifications leverage a redesign algorithm to address not only problematic geometric issues but also potential infeasibilities associated with resource consumption. The utility of the presented modification algorithm is demonstrated using a number of case studies.

References

1.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2019
, “
A Design Modification System for Additive Manufacturing: Towards Feasible Geometry Development
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
American Society of Mechanical Engineers
, Paper No. DETC2019-97840.
2.
Lu
,
Y.
,
Yang
,
Z.
,
Eddy
,
D.
, and
Krishnamurty
,
S.
,
2018
, “
Self-Improving Additive Manufacturing Knowledge Management
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, QC
,
American Society of Mechanical Engineers
, Paper No. IDETC2018-85996.
3.
Adam
,
G. A.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
4.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.
5.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2019
, “
A Preference-Based Approach to Assess a Component’s Design Readiness for Additive Manufacturing
,”
ASME J. Mech. Des.
,
142
(
8
), p.
082001
.
6.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
, and
Měch
,
R.
,
2012
, “
Stress Relief: Improving Structural Strength of 3D Printable Objects
,”
ACM Trans. Graph.
,
31
(
4
), p.
48
.
7.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
11
(
1
), pp.
3
19
.
8.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
(
1
), pp.
632
637
.
9.
Doubrovski
,
Z.
,
Verlinden
,
J. C.
, and
Geraedts
,
J. M.
,
2011
, “
Optimal Design for Additive Manufacturing: Opportunities and Challenges
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
American Society of Mechanical Engineers
, Paper No. DETC2011-48131.
10.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
.
11.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyp. J.
,
22
(
3
), pp.
569
590
.
12.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
.
13.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
.
14.
Seepersad
,
C. C.
,
Govett
,
T.
,
Kim
,
K.
,
Lundin
,
M.
, and
Pinero
,
D.
,
2012
, “
A Designer’s Guide for Dimensioning and Tolerancing SLS Parts
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
921
931
.
15.
Leung
,
Y. S.
,
Kwok
,
T. H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
16.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021013
.
17.
Hagedorn
,
T. J.
,
Krishnamurty
,
S.
, and
Grosse
,
I. R.
,
2018
, “
A Knowledge-Based Method for Innovative Design for Additive Manufacturing Supported by Modular Ontologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021009
.
18.
Kim
,
S.
,
Rosen
,
D. W.
,
Witherell
,
P.
, and
Ko
,
H.
,
2019
, “
A Design for Additive Manufacturing Ontology to Support Manufacturability Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041014
.
19.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3D-Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1
, pp.
64
76
.
20.
Lindemann
,
C.
,
Reiher
,
T.
,
Jahnke
,
U.
, and
Koch
,
R.
,
2015
, “
Towards a Sustainable and Economic Selection of Part Candidates for Additive Manufacturing
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
216
227
.
21.
Ghiasian
,
S. E.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Lewis
,
K.
,
2018
, “
From Conventional to Additive Manufacturing: Determining Component Fabrication Feasibility
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, QC
,
American Society of Mechanical Engineers
, Paper No. DETC2018-86238.
22.
Jaiswal
,
P.
, and
Rai
,
R.
,
2018
, “
A Geometric Reasoning Approach for Additive Manufacturing Print Quality Assessment and Automated Model Correction
,”
Comput. Aided Des.
,
109
, pp.
1
11
.
23.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graph.
,
31
(
6
), pp.
1
9
.
24.
Razvi
,
S. A.
,
Feng
,
S. C.
,
Narayanan
,
A. N.
,
Lee
,
Y. T. T.
, and
Witherell
,
P. W.
,
2019
, “
A Review of Machine Learning Applications in Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
American Society of Mechanical Engineers
, Paper No. IDETC2019-98415.
25.
Yao
,
X.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2017
, “
A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature Recommendation
,”
Rapid Prototyp. J.
,
23
(
6
), pp.
983
997
.
26.
Munguía
,
J.
,
Ciurana
,
J.
, and
Riba
,
C.
,
2009
, “
Neural-Network-Based Model for Build-Time Estimation in Selective Laser Sintering
,”
Proc. Inst. Mech. Eng. B
,
223
(
8
), pp.
995
1003
.
27.
Angelo
,
L. D.
, and
Stefano
,
P. D.
,
2011
, “
A Neural Network-Based Build Time Estimator for Layer Manufactured Objects
,”
Int. J. Adv. Manuf. Technol.
,
57
(
1–4
), pp.
215
224
.
28.
Chan
,
S. L.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Data-Driven Cost Estimation for Additive Manufacturing in Cyber Manufacturing
,”
J. Manuf. Syst.
,
46
, pp.
115
126
.
29.
Lu
,
Z. L.
,
Li
,
D. C.
,
Lu
,
B. H.
,
Zhang
,
A. F.
,
Zhu
,
G. X.
, and
Pi
,
G.
,
2010
, “
The Prediction of the Building Precision in the Laser Engineered Net Shaping Process Using Advanced Networks
,”
Opt. Lasers Eng.
,
48
(
5
), pp.
519
525
.
30.
Chowdhury
,
S.
, and
Anand
,
S.
,
2016
, “
Artificial Neural Network Based Geometric Compensation for Thermal Deformation in Additive Manufacturing Processes
,”
11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
.
31.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B.
,
Tschopp
,
M.
, and
Bian
,
L.
,
2018
, “
Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
.
32.
Zhu
,
Z.
,
Anwer
,
N.
,
Huang
,
Q.
, and
Mathieu
,
L.
,
2018
, “
Machine Learning in Tolerancing for Additive Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
67
(
1
), pp.
157
160
.
33.
Akhil
,
V.
,
Raghav
,
G.
,
Arunachalam
,
N.
, and
Srinivas
,
D. S.
,
2020
, “
Image Data-Based Surface Texture Characterization and Prediction Using Machine Learning Approaches for Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021010
.
34.
Cohen-Or
,
D.
, and
Kaufman
,
A.
,
1995
, “
Fundamentals of Surface Voxelization
,”
Graph. Model Image Process.
,
57
(
6
), pp.
453
461
.
35.
Nelaturi
,
S.
,
Kim
,
W.
, and
Kurtoglu
,
T.
,
2015
, “
Manufacturability Feedback and Model Correction for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021015
.
37.
Kotsiantis
,
S. B.
,
Kanellopoulos
,
D.
, and
Pintelas
,
P. E.
,
2006
, “
Data Preprocessing for Supervised Leaning
,”
Int. J. Comput. Sci.
,
1
(
2
), pp.
111
117
.
38.
Shalabi
,
L. A.
,
Shaaban
,
Z.
, and
Kasasbeh
,
B.
,
2006
, “
Data Mining: A Preprocessing Engine
,”
J. Comput. Sci.
,
2
(
9
), pp.
735
739
.
39.
Sabbagh
,
R.
, and
Ameri
,
F.
,
2018
, “
Supplier Clustering Based on Unstructured Manufacturing Capability Data
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, QC
,
American Society of Mechanical Engineers
, Paper No. IDETC2018-85865.
40.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York, NY
.
41.
Madhulatha
,
T. S.
,
2012
, “
An Overview on Clustering Methods
,”
IOSR J. Eng.
,
2
(
4
), pp.
719
725
. ISSN: 2250–3021
42.
Murtagh
,
F.
, and
Legendre
,
P.
,
2014
, “
Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?
,”
J. Classif.
,
31
(
3
), pp.
274
295
.
43.
Olson
,
C. F.
,
1995
, “
Parallel Algorithms for Hierarchical Clustering
,”
Parallel Comput.
,
21
(
8
), pp.
1313
1325
.
44.
Kodinariya
,
T. M.
, and
Makwana
,
P. R.
,
2013
, “
Review on Determining Number of Cluster in k-Means Clustering
,”
Int. J. Adv. Res. Comput. Sci. Manage. Stud.
,
1
(
6
), pp.
90
95
.
45.
Messac
,
A.
,
1996
, “
Physical Programming—Effective Optimization for Computational Design
,”
AIAA J.
,
34
(
1
), pp.
149
158
.
You do not currently have access to this content.