Abstract

We present a method for approximating surface data of arbitrary topology by a model of smoothly connected B-spline surfaces. Most of the existing solutions for this problem use constructions with limited degrees-of-freedom or they address smoothness between surfaces in a post-processing step, often leading to undesirable surface behavior in proximity of the boundaries. Our contribution is the design of a local method for the approximation process. We compute a smooth B-spline surface approximation without imposing restrictions on the topology of a quadrilateral base mesh defining the individual B-spline surfaces, the used B-spline knot vectors, or the number of B-spline control points. Exact tangent plane continuity can generally not be achieved for a set of B-spline surfaces for an arbitrary underlying quadrilateral base mesh. Our method generates a set of B-spline surfaces that lead to a nearly tangent plane continuous surface approximation and is watertight, i.e., continuous. The presented examples demonstrate that we can generate B-spline approximations with differences of normal vectors along shared boundary curves of less than one degree. Our approach can also be adapted to locally utilize other approximation methods leading to higher orders of continuity.

References

1.
Hoschek
,
J.
,
Lasser
,
D.
, and
Schumaker
,
L. L.
,
1993
,
Fundamentals of Computer Aided Geometric Design
,
AK Peters, Ltd
,
Natick, MA
.
2.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
, 5th ed.,
Morgan Kaufmann Publishers
,
Burlington, MA
.
3.
Peters
,
J.
, and
Fan
,
J.
,
2010
, “
On the Complexity of Smooth Spline Surfaces From Quad Meshes
,”
Comput. Aided Geom. Des.
,
27
(
1
), pp.
96
105
.
4.
Hahmann
,
S.
,
Bonneau
,
G.-P.
, and
Caramiaux
,
B.
,
2008
,
International Conference on Geometric Modeling and Processing
,
Springer
,
Berlin, Germany
, pp.
17
32
.
5.
Bonneau
,
G.-P.
, and
Hahmann
,
S.
,
2014
, “
Flexible G1 Interpolation of Quad Meshes
,”
Graph. Models
,
76
(
6
), pp.
669
681
.
6.
Fan
,
J.
, and
Peters
,
J.
,
2011
, “
Smooth bi-3 Spline Surfaces With Fewest Knots
,”
Comput. Aided Des.
,
43
(
2
), pp.
180
187
.
7.
Eck
,
M.
, and
Hoppe
,
H.
,
1996
, “
Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type
,”
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
,
New Orleans, LA
.
8.
Peters
,
J.
,
1994
, “Constructing C1 Surfaces of Arbitrary Topology Using Biquadratic and Bicubic Splines,”
Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design
,
N.
Sapidis
, ed.,
SIAM
,
Philadelphia, PA
, pp.
277
293
.
9.
Milroy
,
M. J.
,
Bradley
,
C.
,
Vickers
,
G. W.
, and
Weir
,
D.
,
1995
, “
G1 Continuity of B-Spline Surface Patches in Reverse Engineering
,”
Comput. Aided Des.
,
27
(
6
), pp.
471
478
.
10.
Lai
,
J.-Y.
, and
Ueng
,
W.-D.
,
2001
, “
G2 Continuity for Multiple Surfaces Fitting
,”
Int. J. Adv. Manuf. Technol.
,
17
(
8
), pp.
575
585
.
11.
Shi
,
X.
,
Wang
,
T.
, and
Yu
,
P.
,
2004
, “
A Practical Construction of G1 Smooth Biquintic B-Spline Surfaces Over Arbitrary Topology
,”
Comput. Aided Des.
,
36
(
5
), pp.
413
424
.
12.
Lin
,
H.
,
Chen
,
W.
, and
Bao
,
H.
,
2007
, “
Adaptive Patch-Based Mesh Fitting for Reverse Engineering
,”
Comput. Aided Des.
,
39
(
12
), pp.
1134
1142
.
13.
Lin
,
K.-Y.
,
Huang
,
C.-Y.
,
Lai
,
J.-Y.
,
Tsai
,
Y.-C.
, and
Ueng
,
W.-D.
,
2012
, “
Automatic Reconstruction of B-Spline Surfaces With Constrained Boundaries
,”
Comput. Indust. Eng.
,
62
(
1
), pp.
226
244
.
14.
Yoo
,
D.-J.
,
2011
, “
Three-Dimensional Surface Reconstruction of Human Bone Using a B-Spline Based Interpolation Approach
,”
Comput. Aided Des.
,
43
(
8
), pp.
934
947
.
15.
Zhao
,
X.
,
Zhang
,
C.
,
Xu
,
L.
,
Yang
,
B.
, and
Feng
,
Z.
,
2013
, “
IGA-Based Point Cloud Fitting Using B-Spline Surfaces for Reverse Engineering
,”
Inform. Sci.
,
245
(
1
), pp.
276
289
.
16.
Yoshihara
,
H.
,
Yoshii
,
T.
,
Shibutani
,
T.
, and
Maekawa
,
T.
,
2012
, “
Topologically Robust B-Spline Surface Reconstruction From Point Clouds Using Level Set Methods and Iterative Geometric Fitting Algorithms
,”
Comput. Aided Geom. Des.
,
29
(
7
), pp.
422
434
.
17.
Fan
,
J.
, and
Peters
,
J.
,
2008
, “
On Smooth Bicubic Surfaces From Quad Meshes
,”
International Symposium on Visual Computing
,
Las Vegas, NV
, pp.
87
96
.
18.
Mourrain
,
B.
,
Vidunas
,
R.
, and
Villamizar
,
N.
,
2016
, “
Dimension and Bases for Geometrically Continuous Splines on Surfaces of Arbitrary Topology
,”
Comput. Aided Geom. Des.
,
45
(
1
), pp.
108
133
.
19.
Blidia
,
A.
,
Mourrain
,
B.
, and
Villamizar
,
N.
,
2017
, “
G1-Smooth Splines on Quad Meshes With 4-Split Macro-Patch Elements
,”
Comput. Aided Geom. Des.
,
52
(
1
), pp.
106
125
.
20.
Eck
,
M.
,
DeRose
,
T.
,
Duchamp
,
T.
,
Hoppe
,
H.
,
Lounsbery
,
M.
, and
Stuetzle
,
W.
,
1995
, “
Multiresolution Analysis of Arbitrary Meshes
,”
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques
,
Los Angeles, CA
, ACM, pp.
173
182
.
21.
The CGAL Project
,
2019
, CGAL User and Reference Manual, https://doc.cgal.org/4.14/Manual/packages.html, [Online; accessed 2019-10-14].
22.
Huang
,
J.
,
Zhou
,
Y.
,
Niessner
,
M.
,
Shewchuk
,
J. R.
, and
Guibas
,
L. J.
,
2018
, “
Quadriflow: A Scalable and Robust Method for Quadrangulation
,”
Computer Graphics Forum
,
37
(
5
), pp.
147
160
.
23.
Piegl
,
L.
, and
Tiller
,
W.
,
2012
,
The NURBS Book
,
Springer Science & Business Media
,
Berlin, Germany
.
24.
Rogers
,
D. F.
, and
Fog
,
N.
,
1989
, “
Constrained B-Spline Curve and Surface Fitting
,”
Comput. Aided Des.
,
21
(
10
), pp.
641
648
.
25.
Hagen
,
H.
, and
Schulze
,
G.
,
1987
, “
Automatic Smoothing With Geometric Surface Patches
,”
Comput. Aided Geom. Des.
,
4
(
3
), pp.
231
235
.
26.
Kraft
,
D.
,
1988
, “
A Software Package for Sequential Quadratic Programming
,”
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt
.
27.
Johnson
,
S. G.
,
2014
, “
The Nlopt Nonlinear-Optimization Package
,” http://github.com/stevengj/nlopt, [Online; accessed 2019-10-14].
You do not currently have access to this content.