Abstract

With the arises of Industry 4.0, numerous concepts have emerged; one of the main concepts is the digital twin (DT). DT is being widely used nowadays, however, as there are several uses in the existing literature; the understanding of the concept and its functioning can be diffuse. The main goal of this paper is to provide a review of the existing literature to clarify the concept, operation, and main characteristics of DT, to introduce the most current operating, communication, and usage trends related to this technology, and to present the performance of the synergy between DT and multi-agent system (MAS) technologies through a computer science approach.

References

1.
Kagermann
,
H.
,
Helbig
,
J.
,
Hellinger
,
A.
, and
Wahlster
,
W.
,
2013
, “
Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry
,”
Final Report of the Industrie 4.0 Working Group, Forschungsunion
.
2.
Redelinghuys
,
A. J. H.
,
Kruger
,
K.
, and
Basson
,
A.
,
2019
, “
A Six-Layer Architecture for Digital Twins With Aggregation
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
,
Springer
, pp.
171
182
.
3.
Kritzinger
,
W.
,
Karner
,
M.
,
Traar
,
G.
,
Henjes
,
J.
, and
Sihn
,
W.
,
2018
, “
Digital Twin in Manufacturing: A Categorical Literature Review and Classification
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
1016
1022
. 10.1016/j.ifacol.2018.08.474
4.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
. 10.1016/j.mfglet.2014.12.001
5.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Procedia Manuf.
,
11
, pp.
939
948
. 10.1016/j.promfg.2017.07.198
6.
Schluse
,
M.
, and
Rossmann
,
J.
,
2016
, “
From Simulation to Experimentable Digital Twins: Simulation-Based Development and Operation of Complex Technical Systems
,”
2016 IEEE International Symposium on Systems Engineering (ISSE)
,
IEEE
, pp.
1
6
.
7.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 deg Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
. 10.1109/ACCESS.2018.2793265
8.
Shafto
,
M.
,
Conroy
,
M.
,
Doyle
,
R.
,
Glaessgen
,
Ed.
,
Kemp
,
C.
,
LeMoigne
,
J.
, and
Wang
,
L.
,
2012
, “
Modeling, Simulation, Information Technology & Processing Roadmap
,”
National Aeronautics and Space Administration
.
9.
Lee
,
J.
,
Lapira
,
E.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2013
, “
Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment
,”
Manuf. Lett.
,
1
(
1
), pp.
38
41
. 10.1016/j.mfglet.2013.09.005
10.
Majumdar
,
P. K.
,
FaisalHaider
,
M.
, and
Reifsnider
,
K.
,
2013
, “
Multi-Physics Response of Structural Composites and Framework for Modeling Using Material Geometry
,”
54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, p.
1577
.
11.
Schroeder
,
G. N.
,
Steinmetz
,
C.
,
Pereira
,
C. E.
, and
Espindola
,
D. B.
,
2016
, “
Digital Twin Data Modeling With Automationml and a Communication Methodology for Data Exchange
,”
IFAC-PapersOnLine
,
49
(
30
), pp.
12
17
. 10.1016/j.ifacol.2016.11.115
12.
Kraft
,
E. M.
,
2016
, “
The Air Force Digital Thread/Digital Twin-Life Cycle Integration and Use of Computational and Experimental Knowledge
,”
54th AIAA Aerospace Sciences Meeting
, p.
0897
.
13.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
, pp.
1
7
.
14.
Răileanu
,
S.
,
Borangiu
,
T.
,
Ivănescu
,
N.
,
Morariu
,
O.
, and
Anton
,
F.
,
2019
, “
Integrating the Digital Twin of a Shop Floor Conveyor in the Manufacturing Control System
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
,
Springer
, pp.
134
145
.
15.
Zheng
,
Y.
,
Yang
,
S.
, and
Cheng
,
H.
,
2018
, “
An Application Framework of Digital Twin and Its Case Study
,”
J. Ambient Intell. Human. Comput.
,
10
(
3
), pp.
1141
1153
. 10.1007/s12652-018-0911-3
16.
Borangiu
,
T.
,
Oltean
,
E.
,
Răileanu
,
S.
,
Anton
,
F.
,
Anton
,
S.
, and
Iacob
,
I.
,
2019
, “
Embedded Digital Twin for Arti-Type Control of Semi-Continuous Production Processes
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
,
Springer
, pp.
113
133
.
17.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems
,
Springer
, pp.
85
113
.
18.
Cardin
,
O.
,
Castagna
,
P.
,
Couedel
,
D.
,
Plot
,
C.
,
Launay
,
J.
,
Allanic
,
N.
,
Madec
,
Y.
, and
Jegouzo
,
S.
,
2019
, “
Energy-Aware Resources in Digital Twin: The Case of Injection Moulding Machines
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
,
Springer
, pp.
183
194
.
19.
Wang
,
H.-K.
,
Haynes
,
R.
,
Huang
,
H.-Z.
,
Dong
,
L.
, and
Atluri
,
S. N.
,
2015
, “
The Use of High-Performance Fatigue Mechanics and the Extended Kalman/Particle Filters, for Diagnostics and Prognostics of Aircraft Structures
,”
Comput. Model. Eng. Sci.
,
105
(
1
), pp.
1
24
.
20.
ECMA International
,
2017
,
The json Data Interchange Syntax, Standard ECMA-404
, 2nd ed.
21.
Oracle
,
2017
, “
Digital Twins for IoT Applications: A Comprehensive Approach to Implementing IoT Digital Twins
,”
Oracle White Paper, January 2017
, https://docs.oracle.com/en/cloud/paas/iot-cloud/iotgs/learn-oracle-iot-digital-twin.html
22.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
23.
Gabor
,
T.
,
Belzner
,
L.
,
Kiermeier
,
M.
,
Beck
,
M. T.
, and
Neitz
,
A.
,
2016
, “
A Simulation-Based Architecture for Smart Cyber-Physical Systems
,”
2016 IEEE International Conference on Autonomic Computing (ICAC)
,
IEEE
, pp.
374
379
.
24.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
. 10.1155/2011/154798
25.
INTELLIGENCE BY AM TURING
,
1950
, “
Computing Machinery and Intelligence-AM Turing
,”
Mind
,
59
(
236
), p.
433
.
26.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2405
2415
. 10.1109/TII.2018.2873186
27.
Mani
,
M.
,
Lee
,
D.
, and
Muntz
,
R. R.
,
2001
, “
Semantic Data Modeling Using Xml Schemas
,”
International Conference on Conceptual Modeling
,
Springer
, pp.
149
163
.
28.
Choi
,
S. S.
,
Yoon
,
T. H.
, and
Noh
,
S. D.
,
2010
, “
XML-Based Neutral File and PLM Integrator for PPR Information Exchange Between Heterogeneous PLM Systems
,”
Int. J. Comput. Integr. Manuf.
,
23
(
3
), pp.
216
228
. 10.1080/09511920903443234
29.
Zhang
,
H.
,
Liu
,
Q.
,
Chen
,
X.
,
Zhang
,
D.
, and
Leng
,
J.
,
2017
, “
A Digital Twin-Based Approach for Designing and Multi-Objective Optimization of Hollow Glass Production Line
,”
IEEE Access
,
5
, pp.
26901
26911
. 10.1109/ACCESS.2017.2766453
30.
Pratt
,
M. J.
,
2001
, “
Introduction to ISO 10303? The Step Standard for Product Data Exchange
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
102
103
. 10.1115/1.1354995
31.
Sudarsan
,
R. F.
,
2001
, “
A Product Information Modeling Framework for Product Lifecycle Management
,”
Comput. Aided Des.
,
37
(
13
), pp.
1399
1411
. 10.1016/j.cad.2005.02.010
32.
Whyte
,
J.
,
Bouchlaghem
,
N.
,
Thorpe
,
A.
, and
McCaffer
,
R.
,
2000
, “
From CAD to Virtual Reality: Modelling Approaches, Data Exchange and Interactive 3d Building Design Tools
,”
Autom. Constr.
,
10
(
1
), pp.
43
55
. 10.1016/S0926-5805(99)00012-6
33.
IEC PAS
,
2006
,
62424 Specification for Representation of Process Control Engineering Requests in p&i Diagrams and for Data Exchange Between p&id Tools and PCE-CAE Tools?
VDE-Verlag GmbH
,
Berlin
.
34.
Garetti
,
M.
,
Fumagalli
,
L.
, and
Negri
,
E.
,
2015
, “
Role of Ontologies for CPS Implementation in Manufacturing
,”
Manage. Prod. Eng. Rev.
,
6
(
4
), pp.
26
32
.
35.
Negri
,
E.
,
Fumagalli
,
L.
,
Garetti
,
M.
, and
Tanca
,
L.
,
2016
, “
Requirements and Languages for the Semantic Representation of Manufacturing Systems
,”
Comput. Ind.
,
81
, pp.
55
66
. 10.1016/j.compind.2015.10.009
36.
Gruber
,
T. R.
,
1995
, “
Toward Principles for the Design of Ontologies Used for Knowledge Sharing?
Int. J. Hum. Comput. Stud.
,
43
(
5–6
), pp.
907
928
. 10.1006/ijhc.1995.1081
37.
Legat
,
C.
,
Seitz
,
C.
,
Lamparter
,
S.
, and
Feldmann
,
S.
,
2014
, “
Semantics to the Shop Floor: Towards Ontology Modularization and Reuse in the Automation Domain
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
3444
3449
. 10.3182/20140824-6-ZA-1003.02512
38.
Borgo
,
S.
,
2014
, “
An Ontological Approach for Reliable Data Integration in the Industrial Domain
,”
Comput. Ind.
,
65
(
9
), pp.
1242
1252
. 10.1016/j.compind.2013.12.010
39.
Heymans
,
S.
,
Ma
,
L.
,
Anicic
,
D.
,
Ma
,
Z.
,
Steinmetz
,
N.
,
Pan
,
Y.
,
Mei
,
J.
,
Fokoue
,
A.
,
Kalyanpur
,
A.
,
Kershenbaum
,
A.
, and
Schonberg
,
E.
,
2008
, “Ontology Reasoning With Large Data Repositories,”
Ontology Management
,
Springer
, pp.
89
128
.
40.
Alam
,
K. M.
, and
El Saddik
,
A.
,
2017
, “
C2ps: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems
,”
IEEE Access
,
5
, pp.
2050
2062
. 10.1109/ACCESS.2017.2657006
41.
Negri
,
E.
,
Fumagalli
,
L.
,
Cimino
,
C.
, and
Macchi
,
M.
,
2019
, “
FMU-Supported Simulation for CPS Digital Twin
,”
Procedia Manuf.
,
28
, pp.
201
206
. 10.1016/j.promfg.2018.12.033
42.
Abeijón
,
D.
,
Soriguera
,
F.
, and
Thorson
,
L.
,
2007
, “
Fusión de datos para obtención de tiempos de viaje en carretera
.”
43.
Liu
,
Z.
,
Meyendorf
,
N.
, and
Mrad
,
N.
,
2018
, “
The Role of Data Fusion in Predictive Maintenance Using Digital Twin
,”
AIP Conference Proceedings
, Vol.
1949
.
AIP Publishing
, p.
020023
.
44.
Laryukhin
,
V.
,
Skobelev
,
P.
,
Lakhin
,
O.
,
Grachev
,
S.
,
Yalovenko
,
V.
, and
Yalovenko
,
O.
,
2019
, “
The Multi-Agent Approach for Developing a Cyber-Physical System for Managing Precise Farms With Digital Twins of Plants
,”
Cybern. Phys.
,
8
(
4
), pp.
257
261
. 10.35470/2226-4116-2019-8-4-257-261
45.
Bakken
,
D.
,
2003
, “
Middleware
,” https://eecs.wsu.edu/~bakken/middleware.pdf
46.
Yun
,
S.
,
Park
,
J.-H.
, and
Kim
,
W.-T.
,
2017
, “
Data-Centric Middleware Based Digital Twin Platform for Dependable Cyber-Physical Systems
,”
2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN)
,
IEEE
, pp.
922
926
.
47.
Haag
,
S.
, and
Anderl
,
R.
,
2018
, “
Digital Twin–Proof of Concept
,”
Manuf. Lett.
,
15
, pp.
64
66
. 10.1016/j.mfglet.2018.02.006
48.
Biesinger
,
F.
,
Meike
,
D.
,
Kraß
,
B.
, and
Weyrich
,
M.
,
2019
, “
A Digital Twin for Production Planning Based on Cyber-Physical Systems: A Case Study for a Cyber-Physical System-Based Creation of a Digital Twin
,”
Procedia CIRP
,
79
, pp.
355
360
. 10.1016/j.procir.2019.02.087
49.
André
,
P.
,
Azzi
,
F.
, and
Cardin
,
O.
,
2019
, “
Heterogeneous Communication Middleware for Digital Twin Based Cyber Manufacturing Systems
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
,
Springer
, pp.
146
157
.
50.
Ayani
,
M.
,
Ganebäck
,
M.
, and
Ng
,
A. H. C.
,
2018
, “
Digital Twin: Applying Emulation for Machine Reconditioning
,”
Procedia CIRP
,
72
, pp.
243
248
. 10.1016/j.procir.2018.03.139
51.
Arisoy
,
E. B.
,
Ren
,
G.
,
Ulu
,
E.
,
Ulu
,
N. G.
, and
Musuvathy
,
S.
,
2016
, “
A Data-Driven Approach to Predict Hand Positions for Two-Hand Grasps of Industrial Objects
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
, p.
V01AT02A067
.
52.
Kádár
,
B.
,
Lengyel
,
A.
,
Monostori
,
L.
,
Suginishi
,
Y.
,
Pfeiffer
,
A.
, and
Nonaka
,
Y.
,
2010
, “
Enhanced Control of Complex Production Structures by Tight Coupling of the Digital and the Physical Worlds
,”
CIRP Ann.
,
59
(
1
), pp.
437
440
. 10.1016/j.cirp.2010.03.123
53.
Kaylani
,
H.
, and
Atieh
,
A. M.
,
2016
, “
Simulation Approach to Enhance Production Scheduling Procedures at a Pharmaceutical Company With Large Product Mix
,”
Procedia CIRP
,
41
, pp.
411
416
. 10.1016/j.procir.2015.12.072
54.
Vachálek
,
J.
,
Bartalskỳ
,
L.
,
Rovnỳ
,
O.
,
Šišmišová
,
D.
,
Morháč
,
M.
, and
Lokšík
,
M.
,
2017
, “
The Digital Twin of an Industrial Production Line Within the Industry 4.0 Concept
,”
2017 21st International Conference on Process Control (PC)
,
IEEE
, pp.
258
262
.
55.
Gorodetsky
,
V.
,
Skobelev
,
P.
, and
Marik
,
V.
,
2020
, “
System Engineering View on Multi-Agent Technology for Industrial Applications: Barriers and Prospects
,”
Cybern. Phys.
,
9
(
1
), pp.
13
30
. 10.35470/2226-4116-2020-9-1-13-30
56.
Valckenaers
,
P.
, and
Van Brussel
,
H.
,
2008
, “
Intelligent Products: Intelligent Beings Or Agents?
,”
International Conference on Information Technology for Balanced Automation Systems
,
Springer
, pp.
295
302
.
57.
Valckenaers
,
P.
,
2018
, “
Arti Reference Architecture–Prosa Revisited
,”
International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
,
Springer
, pp.
1
19
.
58.
Van Brussel
,
H.
,
Wyns
,
J.
,
Valckenaers
,
P.
,
Bongaerts
,
L.
, and
Peeters
,
P.
,
1998
, “
Reference Architecture for Holonic Manufacturing Systems: Prosa
,”
Comput. Ind.
,
37
(
3
), pp.
255
274
. 10.1016/S0166-3615(98)00102-X
59.
Bakliwal
,
K.
,
Dhada
,
M. H.
,
Palau
,
A. S.
,
Parlikad
,
A. K.
, and
Lad
,
B. K.
,
2018
, “
A Multi Agent System Architecture to Implement Collaborative Learning for Social Industrial Assets
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
1237
1242
. 10.1016/j.ifacol.2018.08.421
60.
GE DIGITAL
,
2017
, “
The Digital Twin: Compressing Time to Value for Digital Industrial Companies
,”
Technical Report
.
61.
Palau
,
A. S.
,
Dhada
,
M. H.
,
Bakliwal
,
K.
, and
Parlikad
,
A. K.
,
2019
, “
An Industrial Multi Agent System for Real-Time Distributed Collaborative Prognostics
,”
Eng. Appl. Artif. Intell.
,
85
, pp.
590
606
. 10.1016/j.engappai.2019.07.013
62.
Kumar
,
S.
,
Lad
,
B. K.
,
Dhada
,
M. H.
, and
Bakliwal
,
K.
,
2019
, “
Distributed Job Scheduling Using Multi-Agent System
,”
Proceedings of the International Conference on Industrial Engineering and Operations Management
,
Bangkok
.
63.
Jung
,
T.
,
Shah
,
P.
, and
Weyrich
,
M.
,
2018
, “
Dynamic Co-simulation of Internet-of-Things-Components Using a Multi-Agent-System
,”
Procedia CIRP
,
72
, pp.
874
879
. 10.1016/j.procir.2018.03.084
64.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
2008 International Conference on Prognostics and Health Management
,
IEEE
, pp.
1
9
.
65.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
,
Isard
,
M.
, and
Kudlur
,
M.
,
2016
, “
Tensorflow: A System for Large-Scale Machine Learning
,”
12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16)
, pp.
265
283
.
66.
Alaya
,
N.
,
Dafflon
,
B.
,
Moalla
,
N.
, and
Ouzrout
,
Y.
,
2017
, “
A Self-Adaptative CPS-Agent Based Quality Control Platform for Industry 4.0
,”
University Claude Bernard Lyon, University Lumire Lyon 2
.
67.
Rzevski
,
G.
, and
Skobelev
,
P.
,
2014
,
Managing Complexity
,
WIT Press
.
68.
Gorodetsky
,
V. I.
,
Kozhevnikov
,
S. S.
,
Novichkov
,
D.
, and
Skobelev
,
P. O.
,
2019
, “
The Framework for Designing Autonomous Cyber-Physical Multi-Agent Systems for Adaptive Resource Management
,”
International Conference on Industrial Applications of Holonic and Multi-Agent Systems
,
Springer
, pp.
52
64
.
69.
Deming
,
W. E.
,
2018
,
Out of the Crisis
,
MIT Press
.
70.
Rodemann
,
T.
,
Eckhardt
,
T.
,
Unger
,
R.
, and
Schwan
,
T.
,
2019
, “
Using Agent-Based Customer Modeling for the Evaluation of EV Charging Systems
,”
Energies
,
12
(
15
), p.
2858
. 10.3390/en12152858
71.
ESI:2019
, “
Esi-iti. simulationx 4.0.s
,” Accessed July 22, 2019.
72.
Fritzson
,
P.
, and
Bunus
,
P.
,
2002
, “
Modelica-a General Object-Oriented Language for Continuous and Discrete-Event System Modeling and Simulation
,”
Proceedings 35th Annual Simulation Symposium (SS 2002)
,
IEEE
, pp.
365
380
.
73.
Clark
,
T.
,
Barn
,
B.
,
Kulkarni
,
V.
, and
Barat
,
S.
,
2020
, “
Language Support for Multi Agent Reinforcement Learning
,”
Proceedings of the 13th Innovations in Software Engineering Conference on Formerly Known as India Software Engineering Conference
, pp.
1
12
.
74.
Buşoniu
,
Lucian
,
Babuška
,
Robert
, and
De Schutter
,
Bart
,
2010
, “Multi-Agent Reinforcement Learning: An Overview,”
Innovations in Multi-Agent Systems and Applications-1
,
Springer
, pp.
183
221
.
75.
Christopher
,
J. C. H.
,
1992
, “
Watkins and Peter Dayan. Q-Learning
,”
Mach. Learn.
,
8
(
3
), pp.
279
292
.
76.
Simpkins
,
C.
, and
Isbell
,
C.
,
2019
, “
Composable Modular Reinforcement Learning
,”
Proceedings of the AAAI Conference on Artificial Intelligence
, Vol.
33
, pp.
4975
4982
.
77.
Schroeder
,
G.
,
Steinmetz
,
C.
,
Pereira
,
C. E.
,
Muller
,
I.
,
Garcia
,
N.
,
Espindola
,
D.
, and
Rodrigues
,
R.
,
2016
, “
Visualising the Digital Twin Using Web Services and Augmented Reality
,”
2016 IEEE 14th International Conference on Industrial Informatics (INDIN)
,
IEEE
, pp.
522
527
.
78.
Talkhestani
,
B. A.
,
Jazdi
,
N.
,
Schloegl
,
W.
, and
Weyrich
,
M.
,
2018
, “
Consistency Check to Synchronize the Digital Twin of Manufacturing Automation Based on Anchor Points
,”
Proc. CIRP
,
72
, pp.
159
164
. 10.1016/j.procir.2018.03.166
79.
Bottani
,
E.
,
Cammardella
,
A.
,
Murino
,
T.
, and
Vespoli
,
S.
,
2017
, “
From the Cyber-Physical System to the Digital Twin: The Process Development for Behaviour Modelling of a Cyber Guided Vehicle in M2M Logic
,”
XXII Summer School Francesco TurcoIndustrial Systems Engineering
, pp.
1
7
.
80.
Lohtander
,
M.
,
Ahonen
,
N.
,
Lanz
,
M.
,
Ratava
,
J.
, and
Kaakkunen
,
J.
,
2018
, “
Micro Manufacturing Unit and the Corresponding 3d-Model for the Digital Twin
,”
Procedia Manuf.
,
25
, pp.
55
61
. 10.1016/j.promfg.2018.06.057
81.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.
,
66
(
1
), pp.
141
144
. 10.1016/j.cirp.2017.04.040
82.
Ríos
,
J.
,
Hernández
,
J. C.
,
Oliva
,
M.
, and
Mas
,
F.
,
2015
, “
Product Avatar as Digital Counterpart of a Physical Individual Product: Literature Review and Implications in an Aircraft
,”
ISPE CE
, pp.
657
666
.
83.
Ríos
,
J.
,
Morate
,
F. M.
,
Oliva
,
M.
, and
Hernández
,
J. C.
,
2016
, “
Framework to Support the Aircraft Digital Counterpart Concept With an Industrial Design View
,”
Int. J. Agile Syst. Manage.
,
9
(
3
), pp.
212
231
. 10.1504/IJASM.2016.079934
84.
Um
,
J.
,
Weyer
,
S.
, and
Quint
,
F.
,
2017
, “
Plug-and-Simulate Within Modular Assembly Line Enabled by Digital Twins and the Use of Automationml
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
15904
15909
. 10.1016/j.ifacol.2017.08.2360
85.
Karnon
,
J.
, and
Afzali
,
H. H. A.
,
2014
, “
When to Use Discrete Event Simulation (des) for the Economic Evaluation of Health Technologies? A Review and Critique of the Costs and Benefits of Des
,”
Pharmacoeconomics
,
32
(
6
), pp.
547
558
. 10.1007/s40273-014-0147-9
86.
Downs
,
J. J.
, and
Vogel
,
E. F.
,
1993
, “
A Plant-Wide Industrial Process Control Problem
,”
Comput. Chem. Eng.
,
17
(
3
), pp.
245
255
. 10.1016/0098-1354(93)80018-I
87.
He
,
R.
,
Chen
,
G.
,
Dong
,
C.
,
Sun
,
S.
, and
Shen
,
X.
,
2019
, “
Data-Driven Digital Twin Technology for Optimized Control in Process Systems
,”
ISA Trans.
,
95
, pp.
221
234
. 10.1016/j.isatra.2019.05.011
88.
Li
,
W.
,
Gu
,
S.
,
Zhang
,
X.
, and
Chen
,
T.
,
2020
, “
A Pattern Matching and Active Simulation Method for Process Fault Diagnosis
,”
Ind. Eng. Chem. Res.
,
59
(
27
), pp.
12525
12535
.
You do not currently have access to this content.