Abstract

We propose a method for ensuring traceability of metal goods in an efficient and secure manner that leverages data obtained from micrographs of a part’s surface that is instance specific (i.e., different for another instance of that same part). All stakeholders in modern supply chains face a growing need to ensure quality and trust in the goods they produce. Complex supply chains open many opportunities for counterfeiters, saboteurs, or other attackers to infiltrate supply networks, and existing methods for preventing such attacks can be costly, invasive, and ineffective. The proposed method extracts discriminatory-yet-robust intrinsic strings using features extracted from the two-point autocorrelation data of surface microstructures, as well as from local volume fraction data. By using a synthetic dataset of three-phase micrographs similar to those obtained from metal alloy systems using low-cost optical microscopy techniques, we discuss tailoring the method with respect to cost and security and discuss the performance of the method in the context of anticounterfeiting and how similar methods may be evaluated for performance. Cryptographic extensions of this methodology are also discussed.

References

1.
Gansler
,
J. S.
,
Lucyshyn
,
W.
, and
Rigilano
,
J.
,
2014
, “
Addressing Counterfeit Parts in the DOD Supply Chain
,”
Maryland University College Park Center for Public Policy and Private Enterprise
,
Technical Report, No. UMD-LM-14-012
.
2.
Stevenson
,
M.
, and
Busby
,
J.
,
2015
, “
An Exploratory Analysis of Counterfeiting Strategies: Towards Counterfeit-Resilient Supply Chains
,”
Int. J. Oper. Prod. Manage.
,
35
(
1
), pp.
110
144
. 10.1108/IJOPM-04-2012-0174
3.
Dachowicz
,
A.
,
Atallah
,
M.
, and
Panchal
,
J. H.
,
2018
, “
Optical Puf Design for Anti-Counterfeiting in Manufacturing of Metallic Goods
,”
2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
, p.
V01BT02A035
.
4.
Voloshynovskiy
,
S.
,
Diephuis
,
M.
,
Beekhof
,
F.
,
Koval
,
O.
, and
Keel
,
B.
,
2012
, “
Towards Reproducible Results in Authentication Based on Physical Non-Cloneable Functions: The Forensic Authentication Microstructure Optical Set (famos)
,”
2012 IEEE International Workshop on Information Forensics and Security (WIFS)
,
Tenerife, Spain
,
Dec. 2–5
,
IEEE
, pp.
43
48
.
5.
Suh
,
G. E.
, and
Devadas
,
S.
,
2007
, “
Physical Unclonable Functions for Device Authentication and Secret Key Generation
,”
Proceedings of the 44th Annual Design Automation Conference
,
San Diego, CA
,
June 4–8
,
ACM
, pp.
9
14
.
6.
Tuyls
,
P.
, and
Škorić
,
B.
,
2006
,
AmIware Hardware Technology Drivers of Ambient Intelligence
,
Springer
,
New York
, pp.
421
447
.
7.
Pappu
,
R.
,
Recht
,
B.
,
Taylor
,
J.
, and
Gershenfeld
,
N.
,
2002
, “
Physical One-Way Functions
,”
Science
,
297
(
5589
), pp.
2026
2030
. 10.1126/science.1074376
8.
Niezgoda
,
S.
,
Fullwood
,
D.
, and
Kalidindi
,
S.
,
2008
, “
Delineation of the Space of 2-Point Correlations in a Composite Material System
,”
Acta Mater.
,
56
(
18
), pp.
5285
5292
. 10.1016/j.actamat.2008.07.005
9.
Cecen
,
A.
,
Fast
,
T.
, and
Kalidindi
,
S. R.
,
2016
, “
Versatile Algorithms for the Computation of 2-Point Spatial Correlations in Quantifying Material Structure
,”
Integrating Mater. Manuf. Innovation
,
5
(
1
), p.
1
. 10.1186/s40192-015-0044-x
10.
Wheeler
,
D.
,
Brough
,
D.
,
Fast
,
T.
,
Kalidindi
,
S.
, and
Reid
,
A.
,
2014
, “
Pymks: Materials Knowledge System in Python
.” 10.6084/m9.figshare.1015761
11.
Kalidindi
,
S. R.
,
Niezgoda
,
S. R.
,
Landi
,
G.
,
Vachhani
,
S.
, and
Fast
,
T.
,
2010
, “
A Novel Framework for Building Materials Knowledge Systems
,”
Comput. Mater. Continua
,
17
(
2
), pp.
103
125
.
12.
Park
,
U.
,
Pankanti
,
S.
, and
Jain
,
A. K.
,
2008
, “
Fingerprint Verification Using Sift Features
,”
Biometric Technology for Human Identification V
,
Orlando, FL
,
Mar. 18–19
, p.
69440K
.
13.
Rublee
,
E.
,
Rabaud
,
V.
,
Konolige
,
K.
, and
Bradski
,
G.
,
2011
, “
Orb: An Efficient Alternative to Sift or Surf
,”
2011 IEEE International Conference on Computer Vision (ICCV 2011)
,
Barcelona, Spain
,
Nov. 6–13
.
14.
Muja
,
M.
, and
Lowe
,
D. G.
,
2012
, “
Fast Matching of Binary Features
,”
2012 Ninth Conference on Computer and Robot Vision
,
Toronto, Ontario, Canada
,
May 28–30
,
IEEE
, pp.
404
410
.
15.
Niezgoda
,
S. R.
,
Yabansu
,
Y. C.
, and
Kalidindi
,
S. R.
,
2011
, “
Understanding and Visualizing Microstructure and Microstructure Variance as a Stochastic Process
,”
Acta Mater.
,
59
(
16
), pp.
6387
6400
. 10.1016/j.actamat.2011.06.051
16.
Maes
,
R.
, and
Verbauwhede
,
I.
,
2010
, “Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions,”
Towards Hardware-Intrinsic Security
,
Springer
,
New York
, pp.
3
37
.
17.
Bolotnyy
,
L.
, and
Robins
,
G.
,
2007
, “
Physically Unclonable Function-Based Security and Privacy in Rfid Systems
,”
Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’07)
,
White Plains, NY
,
Mar. 19–23
,
IEEE
, pp.
211
220
.
18.
Dachowicz
,
A.
,
Chaduvula
,
S. C.
,
Atallah
,
M.
, and
Panchal
,
J. H.
,
2017
, “
Microstructure-Based Counterfeit Detection in Metal Part Manufacturing
,”
JOM
,
69
(
11
), pp.
2390
2396
. 10.1007/s11837-017-2502-8
19.
Sharma
,
A.
,
Subramanian
,
L.
, and
Brewer
,
E. A.
,
2011
, “
Paperspeckle: Microscopic Fingerprinting of Paper
,”
Proceedings of the 18th ACM Conference on Computer and Communications Security
,
Chicago, IL
,
Oct. 17–21
,
ACM
, pp.
99
110
.
20.
Schuh
,
C. A.
,
Kumar
,
M.
, and
King
,
W. E.
,
2003
, “
Analysis of Grain Boundary Networks and Their Evolution During Grain Boundary Engineering
,”
Acta Mater.
,
51
(
3
), pp.
687
700
. 10.1016/S1359-6454(02)00447-0
21.
Fullwood
,
D. T.
,
Niezgoda
,
S. R.
, and
Kalidindi
,
S. R.
,
2008
, “
Microstructure Reconstructions From 2-Point Statistics Using Phase-Recovery Algorithms
,”
Acta Mater.
,
56
(
5
), pp.
942
948
. 10.1016/j.actamat.2007.10.044
22.
Qidwai
,
S. M.
,
Turner
,
D. M.
,
Niezgoda
,
S. R.
,
Lewis
,
A. C.
,
Geltmacher
,
A. B.
,
Rowenhorst
,
D. J.
, and
Kalidindi
,
S. R.
,
2012
, “
Estimating the Response of Polycrystalline Materials Using Sets of Weighted Statistical Volume Elements
,”
Acta Mater.
,
60
(
13–14
), pp.
5284
5299
. 10.1016/j.actamat.2012.06.026
23.
Paulson
,
N. H.
,
Priddy
,
M. W.
,
McDowell
,
D. L.
, and
Kalidindi
,
S. R.
,
2017
, “
Reduced-Order Structure-Property Linkages for Polycrystalline Microstructures Based on 2-Point Statistics
,”
Acta Mater.
,
129
, pp.
428
438
. 10.1016/j.actamat.2017.03.009
24.
Mueller
,
T.
,
Kusne
,
A. G.
, and
Ramprasad
,
R.
,
2016
, “
Machine Learning in Materials Science: Recent Progress and Emerging Applications
,”
Rev. Comput. Chem.
,
29
, pp.
186
273
.
25.
Latypov
,
M. I.
, and
Kalidindi
,
S. R.
,
2017
, “
Data-Driven Reduced Order Models for Effective Yield Strength and Partitioning of Strain in Multiphase Materials
,”
J. Comput. Phys.
,
346
, pp.
242
261
. 10.1016/j.jcp.2017.06.013
26.
Kalidindi
,
S. R.
,
Medford
,
A. J.
, and
McDowell
,
D. L.
,
2016
, “
Vision for Data and Informatics in the Future Materials Innovation Ecosystem
,”
JOM
,
68
(
8
), pp.
2126
2137
. 10.1007/s11837-016-2036-5
27.
Huber
,
S.
,
2019
, “
libstick. Software Package for Persistent Homology Calculation
,” https://www.sthu.org/code/libstick/
28.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
29.
Ghrist
,
R.
,
2008
, “
Barcodes: The Persistent Topology of Data
,”
Bull. Am. Math. Soc.
,
45
(
1
), pp.
61
75
. 10.1090/S0273-0979-07-01191-3
30.
Carlsson
,
G.
,
2009
, “
Topology and Data
,”
Bull. Am. Math. Soc.
,
46
(
2
), pp.
255
308
. 10.1090/S0273-0979-09-01249-X
31.
Edelsbrunner
,
H.
, and
Harer
,
J.
,
2010
,
Computational Topology: An Introduction
,
American Mathematical Society
,
Providence, RI
.
32.
Peng
,
H.
,
Long
,
F.
, and
Ding
,
C.
,
2005
, “
Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
8
), pp.
1226
1238
. 10.1109/TPAMI.2005.159
33.
Unler
,
A.
,
Murat
,
A.
, and
Chinnam
,
R. B.
,
2011
, “
mr2pso: A Maximum Relevance Minimum Redundancy Feature Selection Method Based on Swarm Intelligence for Support Vector Machine Classification
,”
Inf. Sci.
,
181
(
20
), pp.
4625
4641
. 10.1016/j.ins.2010.05.037
34.
Kraskov
,
A.
,
Stögbauer
,
H.
, and
Grassberger
,
P.
,
2004
, “
Estimating Mutual Information
,”
Phys. Rev. E
,
69
(
6
), p.
066138
. 10.1103/PhysRevE.69.066138
You do not currently have access to this content.