Abstract
Manufacturers use cloud manufacturing platforms to offer their services. The literature has suggested a semantic web-based cloud manufacturing framework, in which engineering knowledge is modeled using structured syntax. Translating engineering rules to semantic rules by human is a painstaking task and prone to mistakes. We present a scheme that treats converting engineering knowledge into semantic rules as a machine translation task and uses neural machine translation techniques to carry out the conversion.
References
1.
Xu
, X.
, 2012
, “From Cloud Computing to Cloud Manufacturing
,” Rob. Comput. Integr. Manuf.
, 28
(1
), pp. 75
–86
. 10.1016/j.rcim.2011.07.0022.
Wu
, D.
, Rosen
, D. W.
, Wang
, L.
, and Schaefer
, D.
, 2015
, “Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,” Comput. Aided Des.
, 59
, pp. 1
–14
. 10.1016/j.cad.2014.07.0063.
Lu
, Y.
, Xu
, X.
, and Xu
, J.
, 2014
, “Development of a Hybrid Manufacturing Cloud
,” J. Manuf. Syst.
, 33
(4
), pp. 551
–566
. 10.1016/j.jmsy.2014.05.0034.
Lu
, Y.
, and Xu
, X.
, 2018
, “Resource Virtualization: A Core Technology for Developing Cyber-Physical Production Systems
,” J. Manuf. Syst.
, 47
, pp. 128
–140
. 10.1016/j.jmsy.2018.05.0035.
Lu
, Y.
, and Xu
, X.
, 2017
, “A Semantic Web-Based Framework for Service Composition in a Cloud Manufacturing Environment
,” J. Manuf. Syst.
, 42
, pp. 69
–81
. 10.1016/j.jmsy.2016.11.0046.
Ye
, X.
, and Zhao
, P.
, 2016
, “Converting Service Rules to Semantic Rules
,” Proceedings—2016 IEEE International Conference on Services Computing
, San Francisco, CA
, July 1–3
, IEEE
, pp. 752
–759
.7.
Cho
, K.
, van Merrienboer
, B.
, Gulcehre
, C.
, Bahdanau
, D.
, Bougares
, F.
, Schwenk
, H.
, and Bengio
, Y.
, 2014
, “Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation
,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
, Stroudsburg, PA
, Oct. 20–22
, pp. 1724
–1734
.8.
Kang
, S.
, Patil
, L.
, Rangarajan
, A.
, Moitra
, A.
, Jia
, T.
, Robinson
, D.
, and Dutta
, D.
, 2015
, “Extraction of Manufacturing Rules From Unstructured Text Using a Semantic Framework
,” ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Boston, MA
, Aug. 10–14
, ASME
, p. V01BT02A033
.9.
Rangarajan
, A.
, Radhakrishnan
, P.
, Moitra
, A.
, Crapo
, A.
, and Robinson
, D.
, 2013
, “Manufacturability Analysis and Design Feedback System Developed Using Semantic Framework
,” ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Portland, OR
, Aug. 11–15
, ASME
, p. V004T05A001
.10.
Saada
, H.
, Dolques
, X.
, Huchard
, M.
, Nebut
, C.
, and Sahraoui
, H.
, 2012
, “Generation of Operational Transformation Rules From Examples of Model Transformations
,” Internal Conference on Model Driven Engineering Languages and Systems
, Innsbruck, Austria
, Oct. 8–11
.11.
Berant
, J.
, Chou
, A.
, Frostig
, R.
, and Liang
, P.
, 2013
, “Semantic Parsing on Freebase From Question–Answer Pairs
,” Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
, Seattle
, Oct. 17–19
.12.
Wong
, Y. W.
, and Mooney
, R. J.
, 2006
, “Learning for Semantic Parsing With Statistical Machine Translation
,” Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics
, New York
, June 4–9
.13.
Brown
, P. F.
, Della Pietra
, V. J.
, Della Pietra
, S. A.
, and Mercer
, R. L.
, 1993
, “The Mathematics of Statistical Machine Translation: Parameter Estimation
,” Comput. Ling.
, 19
(2
), pp. 263
–312
.14.
Bentivogli
, L.
, Bisazza
, A.
, Cettolo
, M.
, and Federico
, M.
, 2016
, “Neural Versus Phrase-Based Machine Translation Quality: A Case Study
,” Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
, Austin, TX
, Nov. 2–4
, pp. 257
–267
.15.
Luong
, T.
, Pham
, H.
, and Manning
, C. D.
, 2015
, “Effective Approaches to Attention-Based Neural Machine Translation
,” Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
, Lisbon
, Sept. 14–16
, pp. 1412
–1421
.16.
Bahdanau
, D.
, Cho
, K.
, and Bengio
, Y.
, 2015
, “Neural Machine Translation by Jointly Learning to Align and Translate
,” Proceedings of the 2015 International Conference on Learning Representations
, San Diego, CA
, May 7–9
.17.
Pennington
, J.
, Socher
, R.
, and Manning
, C.
, 2014
, “Glove: Global Vectors for Word Representation
,” Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
, Stroudsburg, PA
, Nov. 16–18
, pp. 1532
–1543
.18.
Arora
, S.
, Liang
, Y.
, and Ma
, T.
, 2017
, “A Simple But Tough-to-Beat Baseline for Sentence Embeddings
,” Proceedings of the 2017 International Conference on Learning Representations
, Toulon, France
, Apr. 24–26
.19.
Tai
, K. S.
, Socher
, R.
, and Manning
, C. D.
, 2015
, “Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
,” Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
, Beijing
, July 1–3
, pp. 1556
–1566
.Copyright © 2020 by ASME
You do not currently have access to this content.