Abstract

The ability to classify the capabilities of different manufacturing processes based on computer-aided design (CAD) models of parts is a key missing link in cybermanufacturing. In this paper, we present a one-step approach for automatically classifying the capabilities of three discrete manufacturing processes—milling, turning, and casting—based on part shape, quality, and material property attributes. Specifically, our approach utilizes machine learning to classify manufacturing process capabilities of these processes in terms of part shape attributes such as curvature, rotational symmetry, and pairwise surface point distance (D2) histogram computed from CAD models, as well as part quality (surface finish and size tolerance) and material property attributes of parts. In this manner, historical data can be utilized to classify the capabilities of manufacturing processes. We show that it is possible to achieve high classification accuracies—88% and 83% for the training and test data sets, respectively—using this approach. In addition, a key insight gained from this work is that part shape attributes alone are inadequate for discriminating between the capabilities of the manufacturing processes considered. Specifically, the inclusion of material property and part quality attributes enables the classifier to predict viable manufacturing processes that would otherwise be ignored using shape attributes alone. Future extensions of this work will include enriching the classification process with additional attributes such as production cost, as well as alternative classification methods.

References

1.
Guerra-Zubiaga
,
D. A.
, and
Young
,
R. I. M.
,
2006
, “
A Manufacturing Model to Enable Knowledge Maintenance in Decision Support Systems
,”
J. Manuf. Syst.
,
25
(
2
), pp.
122
136
. 10.1016/S0278-6125(06)80038-5
2.
Wu
,
D.
,
Greer
,
M. J.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Cloud Manufacturing: Strategic Vision and State-of-the-Art
,”
J. Manuf. Syst.
,
32
(
4
), pp.
564
579
. 10.1016/j.jmsy.2013.04.008
3.
Sharp
,
M.
,
Ak
,
R.
, and
Hedberg
,
T.
,
2018
, “
A Survey of the Advancing Use and Development of Machine Learning in Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
170
179
. 10.1016/j.jmsy.2018.02.004
4.
Harding
,
J. A.
,
Shahbaz
,
M.
,
Srinivas
, and
Kusiak
,
A.
,
2005
, “
Data Mining in Manufacturing: A Review
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
969
976
. 10.1115/1.2194554
5.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
157
169
. https://doi.org/10.1016/j.jmsy.2018.01.006
6.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(
Part C
), pp.
144
156
. https://doi.org/10.1016/j.jmsy.2018.01.003
7.
Zhao
,
X.
, and
Rosen
,
D. W.
,
2017
, “
A Data Mining Approach in Real-Time Measurement for Polymer Additive Manufacturing Process With Exposure Controlled Projection Lithography
,”
J. Manuf. Syst.
,
43
(
Part 2
), pp.
271
286
. 10.1016/j.jmsy.2017.01.005
8.
Wang
,
T.
,
Kwok
,
T.-H.
,
Zhou
,
C.
, and
Vader
,
S.
,
2018
, “
In-Situ Droplet Inspection and Closed-Loop Control System Using Machine Learning for Liquid Metal Jet Printing
,”
J. Manuf. Syst.
,
47
(
2
), pp.
83
92
. 10.1016/j.jmsy.2018.04.003
9.
Yuan
,
N.
,
Yang
,
W.
,
Kang
,
B.
,
Xu
,
S.
, and
Li
,
C.
,
2018
, “
Signal Fusion-Based Deep Fast Random Forest Method for Machine Health Assessment
,”
J. Manuf. Syst.
,
48
(
Part A
), pp.
1
8
. 10.1016/j.jmsy.2018.05.004
10.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
. 10.1016/j.rcim.2011.07.002
11.
Feng
,
S. C.
, and
Song
,
E. Y.
,
2003
, “
A Manufacturing Process Information Model for Design and Process Planning Integration
,”
J. Manuf. Syst.
,
22
(
1
), pp.
1
15
. 10.1016/S0278-6125(03)90001-X
12.
Xu
,
H.-M.
, and
Li
,
D.-B.
,
2007
, “
A Clustering-Based Modeling Scheme of the Manufacturing Resources for Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
38
(
1
), p.
154
.
13.
Wang
,
X.
, and
Xu
,
N.
,
2014
, “
Virtualise Manufacturing Capabilities in the Cloud: Requirements, Architecture and Implementation
,”
Int. J. Manuf. Res.
,
9
(
4
), p.
348
. 10.1504/IJMR.2014.066665
14.
Wang
,
L.
,
2015
, “
An Overview of Function Block Enabled Adaptive Process Planning for Machining
,”
J. Manuf. Syst.
,
35
(
2
), pp.
10
25
. 10.1016/j.jmsy.2014.11.013
15.
Zhao
,
Y. Y.
,
Liu
,
Q.
,
Xu
,
W. J.
, and
Gao
,
L.
,
2012
, “
Modeling of Resources Capability for Manufacturing Equipments in Cloud Manufacturing
,”
Appl. Mech. Mater.
,
271–272
, pp.
447
451
. 10.4028/www.scientific.net/AMM.271-272.447
16.
Jang
,
J.
,
Jeong
,
B.
,
Kulvatunyou
,
B.
,
Chang
,
J.
, and
Cho
,
H.
,
2008
, “
Discovering and Integrating Distributed Manufacturing Services With Semantic Manufacturing Capability Profiles
,”
Int. J. Comput. Integr. Manuf.
,
21
(
6
), pp.
631
646
. 10.1080/09511920701350920
17.
Denkena
,
B.
,
Shpitalni
,
M.
,
Kowalski
,
P.
,
Molcho
,
G.
, and
Zipori
,
Y.
,
2007
, “
Knowledge Management in Process Planning
,”
CIRP Ann. Manuf. Technol.
,
56
(
1
), pp.
175
180
. 10.1016/j.cirp.2007.05.042
18.
Ameri
,
F.
, and
Dutta
,
D.
,
2008
, “
A Matchmaking Methodology for Supply Chain Deployment in Distributed Manufacturing Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
011002
. 10.1115/1.2830849
19.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021013
. 10.1115/1.4035787
20.
Kang
,
M.
,
Han
,
J.
, and
Moon
,
J. G.
,
2003
, “
An Approach for Interlinking Design and Process Planning
,”
J. Mater. Process. Technol.
,
139
(
1
), pp.
589
595
. 10.1016/S0924-0136(03)00516-8
21.
Rameshbabu
,
V.
, and
Shunmugam
,
M. S.
,
2009
, “
Hybrid Feature Recognition Method for Setup Planning From STEP AP-203
,”
Robot. Comput. Integr. Manuf.
,
25
(
2
), pp.
393
408
. 10.1016/j.rcim.2007.09.014
22.
Chang
,
T. C.
, and
Wysk
,
R. A.
,
1985
,
An Introduction to Automated Process Planning Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
23.
Hayes
,
C.
, and
Wright
,
P.
,
1989
, “
Automating Process Planning: Using Feature Interactions to Guide Search
,”
J. Manuf. Syst.
,
8
(
1
), pp.
1
15
. 10.1016/0278-6125(89)90015-0
24.
Sormaz
,
D. N.
, and
Khoshnevis
,
B.
,
2000
, “
Modeling of Manufacturing Feature Interactions for Automated Process Planning
,”
J. Manuf. Syst.
,
19
(
1
), pp.
28
45
. 10.1016/S0278-6125(00)88888-3
25.
Turley
,
S. P.
,
Diederich
,
D. M.
,
Jayanthi
,
B. K.
,
Datar
,
A.
,
Ligetti
,
C. B.
, and
Finke
,
D. A.
,
2014
, “
Automated Process Planning and CNC-Code Generation
,”
Industrial and Systems Engineering Research Conference
,
Montreal, Canada
,
May 31–June 3
, pp.
2138
2144
.
26.
Deja
,
M.
, and
Siemiatkowski
,
M. S.
,
2018
, “
Machining Process Sequencing and Machine Assignment in Generative Feature-Based CAPP for Mill-Turn Parts
,”
J. Manuf. Syst.
,
48
(
Part A
), pp.
49
62
. 10.1016/j.jmsy.2018.06.001
27.
Xu
,
X.
,
Wang
,
L.
, and
Newman
,
S. T.
,
2011
, “
Computer-Aided Process Planning—A Critical Review of Recent Developments and Future Trends
,”
Int. J. Comput. Integr. Manuf.
,
24
(
1
), pp.
1
31
. 10.1080/0951192X.2010.518632
28.
Esmaeilian
,
B.
,
Behdad
,
S.
, and
Wang
,
B.
,
2016
, “
The Evolution and Future of Manufacturing: A Review
,”
J. Manuf. Syst.
,
39
(
2
), pp.
79
100
. 10.1016/j.jmsy.2016.03.001
29.
Hedberg
,
T. D.
,
Hartman
,
N. W.
,
Rosche
,
P.
, and
Fischer
,
K.
,
2017
, “
Identified Research Directions for Using Manufacturing Knowledge Earlier in the Product Life Cycle
,”
Int. J. Prod. Res.
,
55
(
3
), pp.
819
827
. 10.1080/00207543.2016.1213453
30.
Han
,
J.
,
Pratt
,
M.
, and
Regli
,
W. C.
,
2000
, “
Manufacturing Feature Recognition From Solid Models: A Status Report
,”
IEEE Trans. Robot. Autom.
,
16
(
6
), pp.
782
796
. 10.1109/70.897789
31.
Han
,
J. H.
,
Han
,
I.
,
Lee
,
E.
, and
Yi
,
J.
,
2001
, “
Manufacturing Feature Recognition Toward Integration With Process Planning
,”
IEEE Trans. Syst. Man, Cybern. Part B
,
31
(
3
), pp.
373
380
. 10.1109/3477.931522
32.
Verma
,
A. K.
, and
Rajotia
,
S.
,
2010
, “
A Review of Machining Feature Recognition Methodologies
,”
Int. J. Comput. Integr. Manuf.
,
23
(
4
), pp.
353
368
. 10.1080/09511921003642121
33.
Vandenbrande
,
J. H.
, and
Requicha
,
A. A. G.
,
1993
, “
Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
15
(
12
), pp.
1269
1285
. 10.1109/34.250845
34.
Zhang
,
Z.
,
Jaiswal
,
P.
, and
Rai
,
R.
,
2018
, “
FeatureNet: Machining Feature Recognition Based on 3D Convolution Neural Network
,”
CAD Comput. Aided Des.
,
101
(
8
), pp.
12
22
. 10.1016/j.cad.2018.03.006
35.
Zhang
,
D.
, and
Lu
,
G.
,
2004
, “
Review of Shape Representation and Description Techniques
,”
Pattern Recognit.
,
37
(
1
), pp.
1
19
. 10.1016/j.patcog.2003.07.008
36.
Zhang
,
D.
, and
Lu
,
G.
,
2002
, “
Shape-Based Image Retrieval Using Generic Fourier Descriptor
,”
Signal Process. Image Commun.
,
17
(
10
), pp.
825
848
. 10.1016/S0923-5965(02)00084-X
37.
Osada
,
R.
,
Funkhouser
,
T.
,
Chazelle
,
B.
, and
Dobkin
,
D.
,
2002
, “
Shape Distributions
,”
ACM Trans. Graph.
,
21
(
4
), pp.
807
832
. 10.1145/571647.571648
38.
Li
,
B.
,
Godil
,
A.
, and
Johan
,
H.
,
2012
, “Non-Rigid and Partial 3D Model Retrieval Using Hybrid Shape Descriptor and Meta Similarity,”
Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science
, Vol.
7431
,
G.
Bebis
,
R.
Boyle
,
B.
Parvin
,
D.
Koracin
,
C.
Fowlkes
,
S.
Wang
,
M.-H.
Choi
,
S.
Mantler
,
J.
Schulze
,
D.
Acevedo
,
K.
Mueller
, and
M.
Papka
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
199
209
.
39.
Shilane
,
P.
, and
Funkhouser
,
T.
,
2006
, “
Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval
,”
IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06)
,
Matsushima, Japan
,
June 14–16
.
40.
Kazhdan
,
M.
,
Funkhouser
,
T.
, and
Rusinkiewicz
,
S.
,
2004
, “
Symmetry Descriptors and 3D Shape Matching
,”
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
,
Nice, France
,
July 8–10
,
New York, NY
, pp.
115
123
.
41.
Mitra
,
N. J.
,
Pauly
,
M.
,
Wand
,
M.
, and
Ceylan
,
D.
,
2013
, “
Symmetry in 3d Geometry: Extraction and Applications
,”
Computer Graphics Forum
,
32
(
6
), pp.
1
23
. https://doi.org/10.1111/cgf.12010
42.
Ip
,
C. Y.
,
Regli
,
W. C.
,
Sieger
,
L.
, and
Shokoufandeh
,
A.
,
2003
, “
Automated Learning of Model Classifications
,”
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications—SM ‘03
,
Seattle, WA
,
June 16–20
,
ACM Press
,
New York
, p.
322
.
43.
Ip
,
C. Y.
, and
Regli
,
W. C.
,
2006
, “
A 3D Object Classifier for Discriminating Manufacturing Processes
,”
Comput. Graph.
,
30
(
6
), pp.
903
916
. 10.1016/j.cag.2006.08.013
44.
Hoefer
,
M. J.
, and
Frank
,
M. C.
,
2018
, “
Automated Manufacturing Process Selection During Conceptual Design
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031701
. 10.1115/1.4038686
45.
Chan
,
S. L.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Data-Driven Cost Estimation for Additive Manufacturing in Cybermanufacturing
,”
J. Manuf. Syst.
,
46
(
1
), pp.
115
126
. 10.1016/j.jmsy.2017.12.001
46.
Rusinkiewicz
,
S.
,
2004
, “
Estimating Curvatures and Their Derivatives on Triangle Meshes
,”
Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission
,
Thessaloniki, Greece
,
Sept. 9
,
IEEE
, pp.
486
493
.
47.
Drozda
,
T.
,
Bakerjian
,
R.
,
Wick
,
C.
,
Benedict
,
J. T.
, and
Veilleux
,
R. F.
,
1992
,
Tool and Manufacturing Engineers Handbook
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
48.
Kalpakjian
,
S.
, and
Schmid
,
S.
,
2007
,
Manufacturing Processes for Engineering Materials
,
Pearson
.
49.
Quinlan
,
J. R.
,
1993
,
C4.5: Programs for Machine Learning
,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
.
50.
Frank
,
E.
, and
Witten
,
I. H.
,
1998
, “Generating Accurate Rule Sets Without Global Optimization,”
Working Paper 98/2
,
Department of Computer Science, University of Waikato
,
New Zealand
.
51.
Friedman
,
N.
,
Geiger
,
D.
, and
Goldszmidt
,
M.
,
1997
, “
Bayesian Network Classifiers
,”
Mach. Learn.
,
29
(
2
), pp.
131
163
. 10.1023/A:1007465528199
52.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
. 10.1023/A:1010933404324
53.
Tan
,
P.-N.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2005
,
Introduction to Data Mining
,
Pearson Addison Wesley
,
Boston, MA
.
54.
Regli
,
W. C.
, and
Gaines
,
D. M.
,
1997
, “
A Repository for Design, Process Planning and Assembly
,”
Comput. Des.
,
29
(
12
), pp.
895
905
.10.1016/s0010-4485(97)00028-6
55.
ISO 10303-224
,
2006
, “
Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 224: Application Protocol: Mechanical Product Definition for Process Planning Using Machining Feature
,”
ISO
,
Geneva, Switzerland
.
You do not currently have access to this content.