Abstract

The increase in the use of metal additive manufacturing (AM) processes in major industries like aerospace, defense, and electronics indicates the need for maintaining a tight quality control. A quick, low-cost, and reliable online surface texture measurement and verification system are required to improve its industrial adoption. In this paper, a comprehensive investigation of the surface characteristics of Ti-6Al-4V selective laser melted (SLM) parts using image texture parameters is discussed. The image texture parameters extracted from the surface images using first-order and second-order statistical methods, and measured 3D surface roughness parameters are used for characterizing the SLM surfaces. A comparative study of roughness prediction models developed using various machine learning approaches is also presented. Among the models, the Gaussian process regression (GPR) model gives an accurate prediction of roughness values with an R2 value of more than 0.9. The test data results of all models are presented.

References

1.
Townsend
,
A.
,
Senin
,
N.
,
Blunt
,
L. A.
,
Leach
,
R. K.
, and
Taylor
,
J.
,
2016
, “
Surface Texture Metrology for Additive Manufacturing of Metal Parts: A Review
,”
Precisi. Eng.
,
46
, pp.
34
47
. 10.1016/j.precisioneng.2016.06.001
2.
Thompson
,
A.
,
Senin
,
N.
,
Giusca
,
C.
, and
Leach
,
R.
,
2017
, “
Topography of Selectively Laser Melted Surfaces: A Comparison of Different Measurement Methods
,”
CIRP Ann.
,
66
(
1
), pp.
543
546
. 10.1016/j.cirp.2017.04.075
3.
Senin
,
N.
,
Thompson
,
A.
, and
Leach
,
R.
,
2017
, “
Characterisation of the Topography of Metal Additive Surface Features With Different Measurement Technologies
,”
Meas. Sci. Technol.
,
28
(
9
), p.
095003
. 10.1088/1361-6501/aa7ce2
4.
Leach
,
R. K.
,
Thompson
,
A.
, and
Senin
,
N.
,
2017
, “
A Metrology Horror Story: The Additive Surface
,”
Asian Society of Precision Engineering and Nanotechnology (ASPEN)/American Society of Precision Engineering (ASPE) Spring Top. Manuf. Metrol. Struct. Free. Surfaces Funct. Appl.
,
Hong Kong, China
,
Mar. 14–17
, pp.
1
4
.
5.
Senin
,
N.
,
Thompson
,
A.
, and
Leach
,
R.
,
2018
, “
Feature-Based Characterisation of Signature Topography in Laser Powder Bed Fusion of Metals
,”
Meas. Sci. Technol.
,
29
(
4
), p.
045009
. 10.1088/1361-6501/aa9e19
6.
Thompson
,
A.
,
Senin
,
N.
, and
Leach
,
R.
,
2016
, “
Towards an Additive Surface Atlas
,”
American Society of Precision Engineering (ASPE)/European Society of Precision Engineering and Nanotechnology (Euspen) Conf. Dimens. Accuracy Surf. Finish Addit. Manuf.
,
Raleigh, NC
,
June 27–30
.
7.
Charles
,
A. P.
,
Elkaseer
,
A.
,
Muller
,
T.
,
Thijs
,
L.
,
Torge
,
M.
,
Hagenmeyer
,
V.
, and
Scholz
,
S.
,
2018
, “
A Study of the Factors Influencing Generated Surface Roughness of Down Facing Surfaces in Selective Laser
Melting
,”
World Congr. Micro Nano Manuf.
,
Portoroz, Slovenia
,
Sept. 18–20
, pp.
327
330
.
8.
Gadelmawla
,
E. S.
,
2004
, “
A Vision System for Surface Roughness Characterization Using the Gray Level Co-occurrence Matrix
,”
NDT E Int.
,
37
(
7
), pp.
577
588
. 10.1016/j.ndteint.2004.03.004
9.
Arunachalam
,
N.
, and
Ramamoorthy
,
B.
,
2007
, “
Texture Analysis for Grinding Wheel Wear Assessment Using Machine Vision
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
3
), pp.
419
430
. 10.1243/09544054JEM577
10.
Kumar
,
R.
,
Kulashekar
,
P.
,
Dhanasekar
,
B.
, and
Ramamoorthy
,
B.
,
2005
, “
Application of Digital Image Magnification for Surface Roughness Evaluation Using Machine Vision
,”
Int. J. Mach. Tools Manuf.
,
45
(
2
), pp.
228
234
. 10.1016/j.ijmachtools.2004.07.001
11.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
. 10.1016/j.jmatprotec.2012.11.011
12.
Campbell
,
R. I.
,
Martorelli
,
M.
, and
Lee
,
H. S.
,
2002
, “
Surface Roughness Visualisation for Rapid Prototyping Models
,”
CAD Comput. Aided Des.
,
34
(
10
), pp.
717
725
. 10.1016/S0010-4485(01)00201-9
13.
Tapia
,
G.
,
Elwany
,
A. H.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
. 10.1016/j.addma.2016.05.009
14.
Syam
,
W. P.
,
Leach
,
R.
,
Rybalcenko
,
K.
,
Gaio
,
A.
, and
Crabtree
,
J.
,
2018
, “
In-Process Measurement of the Surface Quality for a Novel Finishing Process for Polymer Additive Manufacturing
,”
Procedia CIRP
,
75
, pp.
108
113
. 10.1016/j.procir.2018.04.088
15.
Gobert
,
C.
,
Reutzel
,
E. W.
,
Petrich
,
J.
,
Nassar
,
A. R.
, and
Phoha
,
S.
,
2018
, “
Application of Supervised Machine Learning for Defect Detection During Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution Imaging
,”
Addit. Manuf.
,
21
, pp.
517
528
. 10.1016/j.addma.2018.04.005
16.
Haralick
,
R. M.
,
Shanmugam
,
K.
, and
Dinstein
,
I. H.
,
1973
, “
Textural Features for Image Classification
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-3
(
6
), pp.
610
621
. 10.1109/TSMC.1973.4309314
17.
Sun
,
C.
, and
Wee
,
W. G.
,
1983
, “
Neighboring Gray Level Dependence Matrix for Texture Classification
,”
Comput. Vision Graph. Image Process.
,
23
(
3
), pp.
341
352
. 10.1016/0734-189X(83)90032-4
18.
Galloway
,
M. M.
,
2008
, “
Texture Analysis Using Gray Level Run Lengths
,”
Comput. Graph. Image Process
,
4
(
2
), pp.
172
179
. 10.1016/s0146-664x(75)80008-6
19.
Tang
,
X.
,
1998
, “
Texture Information in Run-Length Matrices
,”
IEEE Trans. Image Process
,
7
(
11
), pp.
1602
1609
. 10.1109/83.725367
20.
Yang
,
W.
,
Wang
,
K.
, and
Zuo
,
W.
,
2012
, “
Neighborhood Component Feature Selection for High-Dimensional Data
,”
J. Comput.
,
7
(
1
), pp.
162
168
. 10.4304/jcp.7.1.161-168
21.
Russell
,
S. J.
, and
Norvig
,
P.
,
2010
,
Artificial Intelligence: A Modern Approach
, 3rd ed.,
Pearson Education
,
Upper Saddle River, NJ
.
22.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
. 10.1023/B:STCO.0000035301.49549.88
23.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
. 10.1142/S0129065704001899
24.
Bishop
,
C. M.
,
1996
,
Neural Networks: A Pattern Recognition Perspective
,
Oxford University Press and IOP Publishing
,
New York
.
25.
Zhou
,
X.
,
Liu
,
X.
,
Zhang
,
D.
,
Shen
,
Z.
, and
Liu
,
W.
,
2015
, “
Balling Phenomena in Selective Laser Melted Tungsten
,”
J. Mater. Process. Technol.
,
222
, pp.
33
42
. 10.1016/j.jmatprotec.2015.02.032
26.
Tolochko
,
N. K.
,
Mozzharov
,
S. E.
,
Yadronitsev
,
I. A.
,
Laoui
,
T.
,
Froyen
,
L.
,
Titov
,
V. I.
, and
Ignatiev
,
M. B.
,
2004
, “
Balling Processes During Selective Laser Treatment of Powders
,”
Rapid Prototyp. J.
,
10
(
2
), pp.
78
87
. 10.1108/13552540410526953
27.
Kumar
,
A.
,
Patidar
,
V.
,
Khazanchi
,
D.
, and
Saini
,
P.
,
2015
, “
Effect of Image Quality Improvement on the Leaf Image Classification Accuracy
,”
Int. J. Comput. Sci. Inf. Technol.
,
6
(
6
), pp.
4882
4887
.
28.
Chryssolouris
,
G.
, and
Guillot
,
M.
,
1990
, “
A Comparison of Statistical and AI Approaches to the Selection of Process Parameters in Intelligent Machining
,”
ASME J. Manuf. Sci. Eng.
,
112
(
2
), pp.
122
131
. 10.1115/1.2899554
You do not currently have access to this content.