This review focuses on the design process of additively manufactured mesoscale lattice structures (MSLSs). They are arrays of three-dimensional (3D) printed trussed unit cells, whose dimensions span from 0.1 to 10.0 mm. This study intends to detail the phases of the MSLSs design process (with a particular focus on MSLSs whose unit cells are made up of a network of struts and nodes), proposing an integrated and holistic view of it, which is currently lacking in the literature. It aims at guiding designers' decisions with respect to the settled functional requirements and the manufacturing constraints. It also aims to provide an overview for software developers and researchers concerning the design approaches and strategies currently available. A further objective of this review is to stimulate researchers in exploring new MSLSs functionalities, consciously considering the impact of each design phase on the whole process, and on the manufactured product.

References

1.
Ashby
,
M.
,
2006
, “
The Properties of Foams and Lattices
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
364
(
1838
), pp.
15
30
.
2.
Hearn
,
G.
, and
Adams
,
E.
,
2006
, “
Shape Selection for Lattice Structures
,”
J. Struct. Eng.
,
132
(
11
), pp.
1713
1720
.
3.
Nguyen
,
J.
,
Park
,
S.
,
Rosen
,
D. W.
,
Folgar
,
L.
, and
Williams
,
J.
,
2012
, “
Conformal Lattice Structure Design and Fabrication
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp.
138
161
.https://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-10-Nguyen.pdf
4.
Tao
,
W.
, and
Leu
,
M. C.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,”
International Symposium on Flexible Automation
(
ISFA
), Cleveland, OH, Aug. 1–13, pp.
325
332
.
5.
Miyoshi
,
T.
,
Itoh
,
M.
,
Akiyama
,
S.
, and
Kitahara
,
A.
,
2000
, “
Alporas Aluminum Foam: Production Process, Properties, and Applications
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
179
183
.
6.
Ashby
,
M. F.
,
Evans
,
T.
,
Fleck
,
N. A.
,
Hutchinson
,
J.
,
Wadley
,
H.
, and
Gibson
,
L.
,
2000
,
Metal Foams: A Design Guide
, Butterworth-Heinemann, Burlington, MA.
7.
Aurenhammer
,
F.
,
1991
, “
Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure
,”
ACM Comput. Surv. (CSUR)
,
23
(
3
), pp.
345
405
.
8.
Nowak
,
A.
,
2015
, “
Application of Voronoi Diagrams in Contemporary Architecture and Town Planning
,”
Challenges Mod. Technol.
,
6
(
2
), pp.
30
34
.https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5259df1a-e1f7-442f-a68c-10c0c2b35c96/c/chmot62_06.pdf
9.
Tonelli
,
D.
,
Pietroni
,
N.
,
Puppo
,
E.
,
Froli
,
M.
,
Cignoni
,
P.
,
Amendola
,
G.
, and
Scopigno
,
R.
,
2016
, “
Stability of Statics Aware Voronoi Grid-Shells
,”
Eng. Struct.
,
116
, pp.
70
82
.
10.
Michielsen
,
K.
, and
Stavenga
,
D. G.
,
2008
, “
Gyroid Cuticular Structures in Butterfly Wing Scales: Biological Photonic Crystals
,”
J. R. Soc. Interface
,
5
(
18
), pp.
85
94
.
11.
Jung
,
Y.
, and
Torquato
,
S.
,
2005
, “
Fluid Permeabilities of Triply Periodic Minimal Surfaces
,”
Phys. Rev. E
,
72
(
5
), p.
056319
.
12.
Hoare
,
S. H. N.
, and
Murphy
,
D. T.
,
2012
, “
Simulation of Acoustic Wave Propagation in 3-D Sonic Crystals Based on Triply Periodic Minimal Surfaces
,”
Baltic Nordic Acoustics Meeting (BNAM2012)
, Odense, Denmark, June 18–20, pp. 1–6.
13.
Abueidda
,
D. W.
,
Bakir
,
M.
,
Al-Rub
,
R. K. A.
,
Bergström
,
J. S.
,
Sobh
,
N. A.
, and
Jasiuk
,
I.
,
2017
, “
Mechanical Properties of 3D Printed Polymeric Cellular Materials With Triply Periodic Minimal Surface Architectures
,”
Mater. Des.
,
122
, pp.
255
267
.
14.
Maskery
,
I.
,
Sturm
,
L.
,
Aremu
,
A.
,
Panesar
,
A.
,
Williams
,
C.
,
Tuck
,
C.
,
Wildman
,
R.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing
,”
Polymer
(in press).
15.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
16.
Ozbolat
,
I. T.
, and
Khoda
,
A.
,
2014
, “
Design of a New Parametric Path Plan for Additive Manufacturing of Hollow Porous Structures With Functionally Graded Materials
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
041005
.
17.
Chu
,
C.
,
Graf
,
G.
, and
Rosen
,
D. W.
,
2008
, “
Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
5
(
5
), pp.
686
696
.
18.
Deshpande
,
V.
,
Ashby
,
M.
, and
Fleck
,
N.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.
19.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4
,”
J. Laser Appl.
,
27
(
S1
), p.
S14001
.
20.
Tang
,
Y.
,
Dong
,
G.
,
Zhou
,
Q.
, and
Zhao
,
Y. F.
,
2017
, “
Lattice Structure Design and Optimization With Additive Manufacturing Constraints
,”
IEEE Trans. Autom. Sci. Eng.
, epub.
21.
Maskery
,
I.
,
Hussey
,
A.
,
Panesar
,
A.
,
Aremu
,
A.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
An Investigation Into Reinforced and Functionally Graded Lattice Structures
,”
J. Cellular Plast.
,
53
(
2
), pp.
151
165
.
22.
Aremu
,
A.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R. J.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
23.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
A Dithering Based Method to Generate Variable Volume Lattice Cells for Additive Manufacturing
,”
22nd Annual International Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, pp.
8
10
.https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-52-Brackett.pdf
24.
Teufelhart
,
S.
, and
Reinhart
,
G.
,
2012
, “
Optimization of Strut Diameters in Lattice Structures
,”
23th Annual Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp.
719
733
.https://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-54-Teufelhart.pdf
25.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
26.
Maskery
,
I.
,
Aboulkhair
,
N. T.
,
Aremu
,
A.
,
Tuck
,
C.
, and
Ashcroft
,
I.
,
2017
, “
Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices
,”
Addit. Manuf.
,
16
, pp.
24
29
.
27.
Meeks
,
W. H.
, and
Rosenberg
,
H.
,
1993
, “
The Geometry of Periodic Minimal Surfaces
,”
Comment. Math. Helv.
,
68
(
1
), pp.
538
578
.
28.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Young
,
P.
,
2015
, “
Ti–6Al–4V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated Via Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
51
, pp.
61
73
.
29.
Choy
,
S. Y.
,
Sun
,
C.-N.
,
Leong
,
K. F.
, and
Wei
,
J.
,
2017
, “
Compressive Properties of Ti-6Al-4V Lattice Structures Fabricated by Selective Laser Melting: Design, Orientation and Density
,”
Addit. Manuf.
,
16
, pp.
213
224
.
30.
Graf
,
G. C.
,
Chu
,
J.
,
Engelbrecht
,
S.
, and
Rosen
,
D. W.
,
2009
, “
Synthesis Methods for Lightweight Lattice Structures
,”
ASME
Paper No. DETC2009-86993.
31.
Pellegrino
,
S.
, and
Calladine
,
C. R.
,
1986
, “
Matrix Analysis of Statically and Kinematically Indeterminate Frameworks
,”
Int. J. Solids Struct.
,
22
(
4
), pp.
409
428
.
32.
Alkhader
,
M.
, and
Vural
,
M.
,
2007
, “
Effect of Microstructure in Cellular Solids: Bending Vs. stretch Dominated Topologies
,”
Third International Conference on Recent Advances in Space Technologies
(
RAST'07
), Istanbul, Turkey, June 14–16, pp.
136
143
.
33.
Han
,
F.
,
Zhu
,
Z.
, and
Gao
,
J.
,
1998
, “
Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminum
,”
Metall. Mater. Trans. A
,
29
(
10
), pp.
2497
2502
.
34.
Smith
,
M.
,
Guan
,
Z.
, and
Cantwell
,
W.
,
2013
, “
Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured Using the Selective Laser Melting Technique
,”
Int. J. Mech. Sci.
,
67
, pp.
28
41
.
35.
Syam
,
W. P.
,
Jianwei
,
W.
,
Zhao
,
B.
,
Maskery
,
I.
,
Elmadih
,
W.
, and
Leach
,
R.
,
2017
, “
Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,”
Precis. Eng.
(in press).
36.
Tanlak
,
N.
,
De Lange
,
D. F.
, and
Van Paepegem
,
W.
,
2017
, “
Numerical Prediction of the Printable Density Range of Lattice Structures for Additive Manufacturing
,”
Mater. Des.
,
133
, pp.
549
558
.
37.
Aremu
,
A.
,
Maskery
,
I.
,
Tuck
,
C.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2016
, “
Effects of Net and Solid Skins on Self-Supporting Lattice Structures
,”
Challenges in Mechanics of Time Dependent Materials
, Vol.
2
,
Springer
, Cham, Switzerland, pp.
83
89
.
38.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
.
39.
Qiu
,
C.
,
Yue
,
S.
,
Adkins
,
N. J.
,
Ward
,
M.
,
Hassanin
,
H.
,
Lee
,
P. D.
,
Withers
,
P. J.
, and
Attallah
,
M. M.
,
2015
, “
Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
628
, pp.
188
197
.
40.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2011
,
Additive Manufacturing Technologies, 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
,
Berlin
.
41.
Yang
,
L.
,
Harrysson
,
O.
,
West
,
H.
, and
Cormier
,
D.
,
2015
, “
Mechanical Properties of 3D Re-Entrant Honeycomb Auxetic Structures Realized Via Additive Manufacturing
,”
Int. J. Solids Struct.
,
69–70
, pp.
475
490
.
42.
Everhart
,
W.
,
Sawyer
,
E.
,
Neidt
,
T.
,
Dinardo
,
J.
, and
Brown
,
B.
,
2016
, “
The Effect of Surface Finish on Tensile Behavior of Additively Manufactured Tensile Bars
,”
J. Mater. Sci.
,
51
(
8
), pp.
3836
3845
.
43.
Pyka
,
G.
,
Kerckhofs
,
G.
,
Papantoniou
,
I.
,
Speirs
,
M.
,
Schrooten
,
J.
, and
Wevers
,
M.
,
2013
, “
Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures
,”
Materials
,
6
(
10
), pp.
4737
4757
.
44.
de Formanoir
,
C.
,
Suard
,
M.
,
Dendievel
,
R.
,
Martin
,
G.
, and
Godet
,
S.
,
2016
, “
Improving the Mechanical Efficiency of Electron Beam Melted Titanium Lattice Structures by Chemical Etching
,”
Addit. Manuf.
,
11
, pp.
71
76
.
45.
Ziemian
,
C.
,
Sharma
,
M.
, and
Ziemian
,
S.
,
2012
, “
Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling
,”
Mechanical Engineering
, InTechOpen, Rijeka, Croatia.
46.
Hutchinson
,
R.
, and
Fleck
,
N.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.
47.
Vongbunyong
,
S.
, and
Kara
,
S.
,
2017
, “
Rapid Generation of Uniform Cellular Structure by Using Prefabricated Unit Cells
,”
Int. J. Comput. Integr. Manuf.
,
30
(
8
), pp.
792
804
.
48.
Engelbrecht
,
S.
,
Folgar
,
L.
,
Rosen
,
D. W.
,
Schulberger
,
G.
, and
Williams
,
J.
,
2009
, “
Cellular Structures for Optimal Performance
,” 20th Annual International Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 3–5, pp.
831
842
.https://sffsymposium.engr.utexas.edu/Manuscripts/2009/2009-73-Rosen.pdf
49.
Tang
,
Y.
, and
Zhao
,
Y.
,
2015
, “
Lattice-Skin Structures Design With Orientation Optimization
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 13–15, pp.
1378
1393
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-111-Tang.pdf
50.
Reinhart
,
G.
, and
Teufelhart
,
S.
,
2013
, “
Optimization of Mechanical Loaded Lattice Structures by Orientating Their Struts Along the Flux of Force
,”
Procedia CIRP
,
12
, pp.
175
180
.
51.
Wu
,
J.
,
Wang
,
C. C.
,
Zhang
,
X.
, and
Westermann
,
R.
,
2016
, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing
,”
Comput.-Aided Des.
,
80
, pp.
32
42
.
52.
Kolken
,
H. M.
,
Janbaz
,
S.
,
Leeflang
,
S. M.
,
Lietaert
,
K.
,
Weinans
,
H. H.
, and
Zadpoor
,
A. A.
,
2018
, “
Rationally Designed Meta-Implants: A Combination of Auxetic and Conventional Meta-Biomaterials
,”
Mater. Horiz.
,
5
(
1
), pp.
28
35
.
53.
Tang
,
Y.
,
Tang
,
Y.
,
Zhao
,
Y. F.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyping J.
,
22
(
3
), pp.
569
590
.
54.
Choy
,
S. Y.
,
Sun
,
C.-N.
,
Leong
,
K. F.
, and
Wei
,
J.
,
2017
, “
Compressive Properties of Functionally Graded Lattice Structures Manufactured by Selective Laser Melting
,”
Mater. Des.
,
131
, pp.
112
120
.
55.
Reinhart
,
G.
, and
Teufelhart
,
S.
,
2011
, “
Load-Adapted Design of Generative Manufactured Lattice Structures
,”
Phys. Procedia
,
12
(
Pt. A
), pp.
385
392
.
56.
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R. J.
,
2014
, “
An Error Diffusion Based Method to Generate Functionally Graded Cellular Structures
,”
Comput. Struct.
,
138
, pp.
102
111
.
57.
Luxner
,
M. H.
,
Stampfl
,
J.
, and
Pettermann
,
H. E.
,
2005
, “
Finite Element Modeling Concepts and Linear Analyses of 3D Regular Open Cell Structures
,”
J. Mater. Sci.
,
40
(
22
), pp.
5859
5866
.
58.
Salonitis
,
K.
,
Chantzis
,
D.
, and
Kappatos
,
V.
,
2017
, “
A Hybrid Finite Element Analysis and Evolutionary Computation Method for the Design of Lightweight Lattice Components With Optimized Strut Diameter
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
2689
2701
.
59.
Labeas
,
G.
, and
Sunaric
,
M.
,
2010
, “
Investigation on the Static Response and Failure Process of Metallic Open Lattice Cellular Structures
,”
Strain
,
46
(
2
), pp.
195
204
.
60.
Bici
,
M.
,
Campana
,
F.
, and
De Michelis
,
M.
,
2017
, “
Mesoscale Geometric Modeling of Cellular Materials for Finite Element Analysis
,”
Comput.-Aided Des. Appl.
,
14
(
6
), pp.
760
769
.
61.
Boniotti
,
L.
,
Beretta
,
S.
,
Foletti
,
S.
, and
Patriarca
,
L.
,
2017
, “
Strain Concentrations in BCC Micro Lattices Obtained by Am
,”
Procedia Struct. Integr.
,
7
, pp.
166
173
.
62.
Ushijima
,
K.
,
Cantwell
,
W.
,
Mines
,
R.
,
Tsopanos
,
S.
, and
Smith
,
M.
,
2011
, “
An Investigation Into the Compressive Properties of Stainless Steel Micro-Lattice Structures
,”
J. Sandwich Struct. Mater.
,
13
(
3
), pp.
303
329
.
63.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, p. 208760.
64.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
65.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.
66.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, pp.
348
362
.https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-27-Brackett.pdf
67.
Wang
,
Y.
,
Zhang
,
L.
,
Daynes
,
S.
,
Zhang
,
H.
,
Feih
,
S.
, and
Wang
,
M. Y.
,
2018
, “
Design of Graded Lattice Structure With Optimized Mesostructures for Additive Manufacturing
,”
Mater. Des.
,
142
, pp.
114
123
.
68.
Wang
,
Y.
,
Chen
,
F.
, and
Wang
,
M. Y.
,
2017
, “
Concurrent Design With Connectable Graded Microstructures
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
84
101
.
69.
Alexandersen
,
J.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimisation of Manufacturable Microstructural Details Without Length Scale Separation Using a Spectral Coarse Basis Preconditioner
,”
Comput. Methods Appl. Mech. Eng.
,
290
, pp.
156
182
.
70.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures
,”
IEEE Trans. Visualization Comput. Graphics
,
24
(
2
), pp.
1127
1140
.
71.
Beyer
,
C.
,
2014
, “
Strategic Implications of Current Trends in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
064701
.
72.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
73.
Hao
,
L.
,
Raymond
,
D.
,
Yan
,
C.
,
Hussein
,
A.
, and
Young
,
P.
,
2011
, “
Design and Additive Manufacturing of Cellular Lattice Structures
,”
International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP)
, Leiria, Portugal, Sept. 28–Oct. 1, pp.
249
254
.
74.
Kantareddy
,
S.
,
Roh
,
B.
,
Simpson
,
T.
,
Joshi
,
S.
,
Dickman
,
C.
, and
Lehtihet
,
E.
,
2016
, “
Saving Weight With Metallic Lattice Structures: Design Challenges With a Real-World Example
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10, pp.
8
10
.https://sffsymposium.engr.utexas.edu/sites/default/files/2016/171-Kantareddy.pdf
75.
Hadi
,
A.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2015
, “
Design Configurations and Creation of Lattice Structures for Metallic Additive Manufacturing
,”
14ème Colloque National AIP PRIMECA
, La Plagne, France, pp. 1–8.
76.
Segerman
,
H.
,
2012
, “
3D Printing for Mathematical Visualisation
,”
Math. Intell.
,
34
(
4
), pp.
56
62
.
77.
Savio
,
G.
,
Rosso
,
S.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2018
, “
Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review
,”
Appl. Bionics Biomech.
,
2018
, p. 1654782.
78.
Savio
,
G.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2018
, “
Geometric Modeling of Lattice Structures for Additive Manufacturing
,”
Rapid Prototyping J.
,
24
(
2
), pp.
351
360
.
79.
ASTM,
2016
, “
Standard Guidelines for Design for Additive Manufacturing
,” ASTM International, West Conshohocken, PA, Standard No. ASTM52910-17.
80.
Parthasarathy
,
J.
,
Starly
,
B.
, and
Raman
,
S.
,
2011
, “
A Design for the Additive Manufacture of Functionally Graded Porous Structures With Tailored Mechanical Properties for Biomedical Applications
,”
J. Manuf. Processes
,
13
(
2
), pp.
160
170
.
81.
Aversa
,
R.
,
Petrescu
,
F. I. T.
,
Petrescu
,
R. V. V.
, and
Apicella
,
A.
,
2016
, “
Biomimetic Finite Element Analysis Bone Modeling for Customized Hybrid Biological Prostheses Development
,”
Am. J. Appl. Sci.
,
13
(
11
), pp.
1060
1067
.
82.
Murr
,
L.
,
Gaytan
,
S.
,
Medina
,
F.
,
Lopez
,
H.
,
Martinez
,
E.
,
Machado
,
B.
,
Hernandez
,
D.
,
Martinez
,
L.
,
Lopez
,
M. I.
,
Wicker
,
R. B.
, and Bracke, J.,
2010
, “
Next-Generation Biomedical Implants Using Additive Manufacturing of Complex, Cellular and Functional Mesh Arrays
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
368
(
1917
), pp.
1999
2032
.
83.
Petrovic
,
V.
,
Vicente Haro Gonzalez
,
J.
,
Jorda Ferrando
,
O.
,
Delgado Gordillo
,
J.
,
Ramon Blasco Puchades
,
J.
, and
Portoles Grinan
,
L.
,
2011
, “
Additive Layered Manufacturing: Sectors of Industrial Application Shown Through Case Studies
,”
Int. J. Prod. Res.
,
49
(
4
), pp.
1061
1079
.
84.
Limmahakhun
,
S.
,
Oloyede
,
A.
,
Sitthiseripratip
,
K.
,
Xiao
,
Y.
, and
Yan
,
C.
,
2017
, “
3D-Printed Cellular Structures for Bone Biomimetic Implants
,”
Addit. Manuf.
,
15
, pp.
93
101
.
85.
de Wild
,
M.
,
Zimmermann
,
S.
,
Rüegg
,
J.
,
Schumacher
,
R.
,
Fleischmann
,
T.
,
Ghayor
,
C.
, and
Weber
,
F. E.
,
2016
, “
Influence of Microarchitecture on Osteoconduction and Mechanics of Porous Titanium Scaffolds Generated by Selective Laser Melting
,”
3D Printing Addit. Manuf.
,
3
(
3
), pp.
142
151
.
86.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
.
87.
Wadley
,
H. N.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
364
(
1838
), pp.
31
68
.
88.
Brooks
,
H.
, and
Brigden
,
K.
,
2016
, “
Design of Conformal Cooling Layers With Self-Supporting Lattices for Additively Manufactured Tooling
,”
Addit. Manuf.
,
11
, pp.
16
22
.
89.
Ozdemir
,
Z.
,
Hernandez-Nava
,
E.
,
Tyas
,
A.
,
Warren
,
J. A.
,
Fay
,
S. D.
,
Goodall
,
R.
,
Todd
,
I.
, and
Askes
,
H.
,
2016
, “
Energy Absorption in Lattice Structures in Dynamics: Experiments
,”
Int. J. Impact Eng.
,
89
, pp.
49
61
.
90.
Hasib
,
H.
,
Rennie
,
A.
,
Burns
,
N.
, and
Geekie
,
L.
,
2015
, “
Non-Stochastic Lattice Structures for Novel Filter Applications Fabricated Via Additive Manufacturing
,”
Filtration
,
15
(
3
), pp.
174
180
.https://www.researchgate.net/publication/278962837_Non-stochastic_lattice_structures_for_novel_filter_applications_fabricated_via_additive_manufacturing
91.
Sugimura
,
Y.
,
2004
, “
Mechanical Response of Single-Layer Tetrahedral Trusses Under Shear Loading
,”
Mech. Mater.
,
36
(
8
), pp.
715
721
.
92.
Moongkhamklang
,
P.
,
Deshpande
,
V.
, and
Wadley
,
H.
,
2010
, “
The Compressive and Shear Response of Titanium Matrix Composite Lattice Structures
,”
Acta Mater.
,
58
(
8
), pp.
2822
2835
.
93.
Ptochos
,
E.
, and
Labeas
,
G.
,
2012
, “
Shear Modulus Determination of Cuboid Metallic Open-Lattice Cellular Structures by Analytical, Numerical and Homogenisation Methods
,”
Strain
,
48
(
5
), pp.
415
429
.
94.
Kooistra
,
G. W.
,
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2008
, “
Shear Behavior of Aluminum Lattice Truss Sandwich Panel Structures
,”
Mater. Sci. Eng.: A
,
472
(
1–2
), pp.
242
250
.
95.
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2009
, “
Titanium Alloy Lattice Truss Structures
,”
Mater. Des.
,
30
(
6
), pp.
1966
1975
.
96.
Dong
,
L.
, and
Wadley
,
H.
,
2016
, “
Shear Response of Carbon Fiber Composite Octet-Truss Lattice Structures
,”
Compos. Part A: Appl. Sci. Manuf.
,
81
, pp.
182
192
.
97.
Ion
,
A.
,
Frohnhofen
,
J.
,
Wall
,
L.
,
Kovacs
,
R.
,
Alistar
,
M.
,
Lindsay
,
J.
,
Lopes
,
P.
,
Chen
,
H.-T.
, and
Baudisch
,
P.
,
2016
, “
Metamaterial Mechanisms
,”
29th Annual Symposium on User Interface Software and Technology
, Tokyo, Japan, Oct. 16–19, pp.
529
539
.
98.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
.
99.
Yuan
,
S.
,
Shen
,
F.
,
Bai
,
J.
,
Chua
,
C. K.
,
Wei
,
J.
, and
Zhou
,
K.
,
2017
, “
3D Soft Auxetic Lattice Structures Fabricated by Selective Laser Sintering: TPU Powder Evaluation and Process Optimization
,”
Mater. Des.
,
120
, pp.
317
327
.
100.
Li
,
T.
,
Hu
,
X.
,
Chen
,
Y.
, and
Wang
,
L.
,
2017
, “
Harnessing Out-of-Plane Deformation to Design 3D Architected Lattice Metamaterials With Tunable Poisson's Ratio
,”
Sci. Rep.
,
7
(
1
), p.
8949
.
101.
Choi
,
J.
,
Kwon
,
O.-C.
,
Jo
,
W.
,
Lee
,
H. J.
, and
Moon
,
M.-W.
,
2015
, “
4D Printing Technology: A Review
,”
3D Printing Addit. Manuf.
,
2
(
4
), pp.
159
167
.
102.
Bogue
,
R.
,
2012
, “
Smart Materials: A Review of Recent Developments
,”
Assem. Autom.
,
32
(
1
), pp.
3
7
.
103.
Gao
,
B.
,
Yang
,
Q.
,
Zhao
,
X.
,
Jin
,
G.
,
Ma
,
Y.
, and
Xu
,
F.
,
2016
, “
4D Bioprinting for Biomedical Applications
,”
Trends Biotechnol.
,
34
(
9
), pp.
746
756
.
104.
Gladman
,
A. S.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
105.
Meisel
,
N. A.
,
Elliott
,
A. M.
, and
Williams
,
C. B.
,
2015
, “
A Procedure for Creating Actuated Joints Via Embedding Shape Memory Alloys in Polyjet 3D Printing
,”
J. Intell. Mater. Syst. Struct.
,
26
(
12
), pp.
1498
1512
.
106.
Wagner
,
M.
,
Chen
,
T.
, and
Shea
,
K.
,
2017
, “
Large Shape Transforming 4D Auxetic Structures
,”
3D Printing Addit. Manuf.
,
4
(
3
), pp.
133
142
.
107.
Truby
,
R. L.
, and
Lewis
,
J. A.
,
2016
, “
Printing Soft Matter in Three Dimensions
,”
Nature
,
540
(
7633
), pp.
371
378
.
108.
Jiang
,
Y.
, and
Wang
,
Q.
,
2016
, “
Highly-Stretchable 3D-Architected Mechanical Metamaterials
,”
Sci. Rep.
,
6
(
1
), p.
34147
.
You do not currently have access to this content.