The improvement and the massive diffusion of additive manufacturing (AM) techniques have fostered the research of design methods to exploit at best the feature introduced by these solutions. The whole design paradigm needs to be changed taking into account new manufacturing capabilities. AM is not only an innovative method of fabrication, but it requires a new way to design products. Traditional practices of mechanical design are changing to exploit all potential of AM, new parameters and geometries could be realized avoiding technologies constrains of molding or machine tooling. The concept of “manufacturing for design” increasingly acquires greater importance and this means we have the chance to focus almost entirely on product functionality. The possibility to confer inhomogeneous properties to objects provides an important design key. We will study behavior and structure according to desired functions for each object identifying three main aspects to vary: infill type, external topology and shape, and material composition. In this research work, we focus on fused deposition modeling (FDM) technology of three dimensional (3D) printing that easily allows to explore all previous conditions. We present a new way to conceive design process in order to confer variable properties to AM objects and some guidelines to control properties of deformation and elasticity using classic infills. The ultimate aim is to apply new design rules provided by AM in the prosthetic field of lower limb amputees. The socket of the prosthesis represents a deformable interface between the residual limb and the artificial leg that must be optimized according to geometry and loads distribution of patient. An application for a transfemoral patient will be discussed.

References

1.
Aherwar
,
A.
,
Singh
,
A.
, and
Patnaik
,
A.
,
2013
, “
A Review Paper on Rapid Prototyping and Rapid Tooling Techniques for Fabrication of Prosthetic Socket
,”
High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping
,
CRC Press
,
Boca Raton, FL
, pp.
345
353
.
2.
Perkins
,
I.
, and
Skitmore
,
M.
,
2015
, “
Three-Dimensional Printing in the Construction Industry: A Review
,”
Int. J. Constr. Manage.
,
15
(
1
), pp.
1
9
.
3.
Salmi
,
M.
,
Tuomi
,
J.
,
Paloheimo
,
K.
,
Björkstrand
,
R.
,
Paloheimo
,
M.
,
Salo
,
J.
,
Kontio
,
R.
,
Mesimäki
,
K.
, and
Mäkitie
,
A. A.
,
2012
, “
Patient‐Specific Reconstruction With 3D Modeling and DMLS Additive Manufacturing
,”
Rapid Prototyping J.
,
18
(
3
), pp.
209
214
.
4.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
5.
Waran
,
V.
,
Narayanan
,
V.
,
Karuppiah
,
R.
,
Owen
,
S. L. F.
, and
Aziz
,
T.
,
2014
, “
Utility of Multimaterial 3D Printers in Creating Models With Pathological Entities to Enhance the Training Experience of Neurosurgeons
,”
J. Neurosurg.
,
120
(
2
), pp.
489
492
.
6.
Gero
,
J. S.
, and
Kannengiesser
,
U.
,
2004
, “
The Situated Function–Behavior–Structure Framework
,”
Des. Stud.
,
25
(
4
), pp.
373
391
.
7.
Li
,
D.
,
Dai
,
N.
,
Jiang
,
X.
, and
Chen
,
X.
,
2015
, “
Interior Structural Optimization Based on the Density-Variable Shape Modeling of 3D Printed Objects
,”
Int. J. Adv. Manuf. Technol.
,
83
(
9
), pp.
1627
1635
.
8.
Umetani
,
N.
, and
Schmidt
,
R.
,
2013
, “
Cross-Sectional Structural Analysis for 3D Printing Optimization
,”
Proceedings of SIGGRAPH Asia 2013 Technical Briefs
, Hong Kong, Article n.5.
9.
Zhang
,
X.
,
Xia
,
Y.
,
Wang
,
J.
,
Yang
,
Z.
,
Tu
,
C.
, and
Wang
,
W.
,
2015
, “
Medial Axis Tree—An Internal Supporting Structure for 3D Printing
,”
Comput. Aided Geom. Des.
,
35–36
, pp.
149
162
.
10.
Giesen
,
J.
,
Miklos
,
B.
,
Pauly
,
M.
, and
Wormser
,
C.
,
2009
, “
The Scale Axis Transform
,”
Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry SCG’09
, New York, pp.
106
115
.
11.
Christiansen
,
A. N.
,
Schmidt
,
R.
, and
Bærentzen
,
J. A.
,
2015
, “
Automatic Balancing of 3D Models
,”
Comput. Aided Des.
,
58
, pp.
236
241
.
12.
Lu
,
L.
,
Sharf
,
A.
,
Zhao
,
H.
,
Wei
,
Y.
,
Fan
,
Q.
,
Chen
,
X.
,
Savoye
,
Y.
,
Tu
,
C.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2014
, “
Build-to-Last: Strength to Weight 3D Printed Objects
,”
ACM Trans. Graphics (TOG)
,
33
(
4
), Article No. 97.
13.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
, and
Cignoni
,
P.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graphics
,
34
(
4
), Article No. 135.
14.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3D Printing
,”
ACM Trans. Graphics
,
34
(
4
), Article No. 136.
15.
Murphy
,
C.
,
2015
, “
3D Printing Infill Using Biomimetics
,” http://docslide.us/engineering/3d-printing-infill-using-biomimetics.html, DockSlide, docslide.us, last accessed Feb. 2016.
16.
Merriam
,
E. G.
,
Jones
,
J. E.
, and
Howell
,
L. L.
,
2014
, “
Design of 3D-Printed Titanium Compliant Mechanisms
,”
42nd Aerospace Mechanism Symposium
, NASA Goddard Space Flight Center, Greenbelt, MD, NASA/CP–2014-217519, E. A. Boesiger, and C. Hakun, Eds., pp.
169
174
.
17.
Miloradovic
,
B.
,
Çürüklü
,
B.
,
Vujovic
,
M.
,
Popić
,
S.
, and
Rodić
,
A.
,
2015
, “
Low-Cost Anthropomorphic Robot Hand With Elastic Joints—Early Results
,” IcETRAN, Silver Lake, Serbia, Vol.
2
, June 8–11.
18.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2011
, “
Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5
), pp.
437
452
.
19.
Wu
,
G.
,
Cho
,
Y.
,
Choi
,
I. S.
,
Ge
,
D.
,
Li
,
J.
,
Han
,
H. N.
,
Lubensky
,
T.
, and
Yang
,
S.
,
2015
, “
Directing the Deformation Paths of Soft Metamaterials With Prescribed Asymmetric Units
,”
Adv. Mater.
,
27
(
17
), pp.
2747
2752
.
20.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
21.
Bafekrpour
,
E.
,
Molotnikov
,
A.
,
Weaver
,
J. C.
,
Brechet
,
Y.
, and
Estrin
,
Y.
,
2013
, “
Responsive Materials: A Novel Design for Enhanced Machine-Augmented Composites
,”
Sci. Rep.
,
4
, Article No. 3783.
22.
Shima
,
J.
,
Perdigoub
,
C.
,
Chenc
,
E. R.
,
Bertoldia
,
K.
, and
Reisb
,
P. M.
,
2012
, “
Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure
,”
PNAS
,
109
(
16
), pp.
5978
5983
.
23.
Colombo
,
G.
,
Facoetti
,
G.
,
Regazzoni
,
D.
, and
Rizzi
,
C.
,
2013
, “
A Full Virtual Approach to Design and Test Lower Limb Prosthesis
,”
Virtual Phys. Prototyping
,
8
(
2
), pp.
97
111
.
24.
Colombo
,
G.
,
Facoetti
,
G.
,
Morotti
,
R.
, and
Rizzi
,
C.
,
2011
, “
Physically Based Modeling and Simulation to Innovate Socket Design
,”
Comput. Aided Des. Appl.
,
8
(
4
), pp.
617
631
.
25.
MECCATRONICORE
,
2016
, “
Stampini 3D per Uso Professionale e Semiprofessionale
,” www.meccatronicore.com, MECCATRONICORE, Trento, Italy, last accessed Feb. 2016.
You do not currently have access to this content.