Parametric finite element analysis (FEA) models are commonly used in iterative design processes to obtain an optimum model given a set of loads, constraints, objectives, and design parameters to vary. In some instances, it is desirable for a designer to obtain some intuition about how changes in design parameters can affect the FEA solution of interest, before simply sending the model through the optimization loop. For example, designers who wish to explore the design space and understand how each variable changes the output in a visual way, looking at the whole model and not just numbers or a response surface of a single FEA node. This could be accomplished by running the FEA on the parametric model for a set of part family members, but this can be very time consuming and only gives snapshots of the model's real behavior. This paper presents a method of visualizing the FEA solution of the parametric model as design parameters are changed in real-time by approximating the FEA solution using parametric FEA modeling, surrogate modeling methods, and visualization methods. The implementation develops a parametric FEA mode that includes mesh morphing algorithms that allow the mesh to change parametrically along with the model geometry. This allows the surrogate models assigned to each individual node to use the nodal solution of multiple finite element analyses as regression points to approximate the FEA solution. The surrogate models can then be mapped to their respective geometric locations in real-time. The results of the FEA calculations are updated in real-time as the parameters of the design model change allowing real-time visualization.

References

1.
De Langhe
,
K.
,
Vandepitte
,
D.
, and
Sas
,
P.
,
1997
, “
A Combined Dynamic-Static Finite Element Model for the Calculation of Dynamic Stresses at Critical Locations
,”
Comput. Struct.
,
65
(
2
), pp.
241
254
.10.1016/S0045-7949(96)00354-9
2.
Hung
,
E. S.
, and
Senturia
,
S. D.
,
1999
, “
Generating Efficient Dynamical Models for Microelectromechanical Systems From a Few Finite-Element Simulation Runs
,”
J. Microelectromech. Syst.
,
8
(
3
), pp.
280
289
.10.1109/84.788632
3.
Lin
,
R.
, and
Xia
,
Y.
,
2003
, “
A New Eigensolution of Structures Via Dynamic Condensation
,”
J. Sound Vib.
,
266
(
1
), pp.
93
106
.10.1016/S0022-460X(02)01278-6
4.
Wang
,
H.
,
Li
,
E.
, and
Li
,
G. Y.
,
2011
, “
Probability-Based Least Square Support Vector Regression Metamodeling Technique for Crashworthiness Optimization Problems
,”
Comput. Mech.
,
7
(
3
), pp.
251
263
.10.1007/s00466-010-0532-y
5.
Keane
,
A. J.
, and
Nair
,
P. B.
,
2005
,
Computational Approaches for Aerospace Design: The Pursuit of Excellence
,
Wiley Ltd.
,
Chichester, UK
10.1002/0470855487.
6.
Gano
,
S. E.
,
Kim
,
H.
, and
Ii
,
D. E. B.
,
2006
, “
Comparison of Three Surrogate Modeling Techniques: Datascape[Textregistered], Kriging, and Second Order Regression
,”
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Lockheed Martin—Integrated Systems and Solutions
, pp.
1
18
.
7.
Hafner
,
M.
,
Bohmer
,
S.
,
Henrotte
,
F.
, and
Hameyer
,
K.
,
2011
, “
Interactive Visualization of Transient 3D Electromagnetic and n-Dimensional Parameter Spaces in Virtual Reality
,”
COMPEL: Int. J. Comput. Math. Electr. Electron. Eng.
,
30
(
3
), pp.
906
915
.10.1108/03321641111110870
8.
Moaveni
,
S.
,
2008
,
Finite Element Analysis: Theory and Application With ansys
, 3rd ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
9.
Wang
,
G. G.
, and
Shan
,
S.
,
2006
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.10.1115/1.2429697
10.
Shepard
,
D.
,
1968
, “
A Two-Dimensional Interpolation Function for Irregularly-Spaced Data
,”
Proceedings of the 1968 23rd ACM National Conference
, ACM, pp.
517
524
.
11.
Zeid
,
I.
,
2005
,
Mastering cadcam
,
McGraw-Hill Higher Education
,
New York
.
12.
Zhu
,
P.
,
Zhang
,
Y.
, and
Chen
,
G.
,
2011
, “
Metamodeling Development for Reliability-Based Design Optimization of Automotive Body Structure
,”
Comput. Ind.
,
62
(
7
), pp.
729
741
.10.1016/j.compind.2011.05.008
13.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.10.1007/s00158-001-0160-4
14.
Bazilevs
,
Y.
,
Calo
,
V.
,
Cottrell
,
J.
,
Evans
,
J.
,
Hughes
,
T.
,
Lipton
,
S.
,
Scott
,
M.
, and
Sederberg
,
T.
,
2010
, “
Isogeometric Analysis Using t-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
229
263
.10.1016/j.cma.2009.02.036
15.
ANSYS Inc.,
2012
,
ansys Software Help Documentation
,
ANSYS Inc.
,
Providence, RI
.
16.
Dassault Simulia,
2012
,
isight Software Help Documentation
,
Dassault Simulia
,
Johnston, RI
.
17.
Hardy
,
R. L.
,
1971
, “
Multiquadratic Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
,
76
(
8
), pp.
1905
1915
.10.1029/JB076i008p01905
18.
Kansa
,
E. J.
, “
Motivation for Using Radial Basis Functions to Solve PDEs
,” Technical Report. Available at http://www.rbf-pde.org/kansaweb.html
19.
Mak
,
M. W.
, and
Li
,
C. K.
,
1999
, “
Elliptical Basis Function Networks and Radial Basis Function Networks for Speaker Verification: A Comparative Study
,”
Proceedings of the International Joint Conference on Neural Networks
, pp.
3034
3039
.
20.
Selin
,
E.
,
2012
, “
Application of Parametric Nurbs Geometry to Mode Shape Identification and the Modal Assurance Criterion
,” M.S. thesis, Brigham Young University, Provo, UT.
21.
Choudhury
,
A.
,
Nair
,
P. B.
, and
Keane
,
A. J.
,
2002
, “
A Data Parallel Approach for Large-Scale Gaussian Process Modeling
,”
Proceedings of the Second SIAM International Conference on Data Mining
, pp.
95
111
.
You do not currently have access to this content.