The problem of segmenting the object from the background is addressed in the proposed Gaussian and Gabor Filter Approach (GGFA) for object segmentation. An improved and efficient approach based on Gaussian and Gabor Filter reads the given input image and performs filtering and smoothing operation. The region occupied by the object is extracted from the image by performing various operations like bilateral filtering, Edge detection, Clustering, and Region growing. The proposed approach experimented on standard images taken from Caltech datasets, Corel Photo CDs, and Weizmann horse datasets show significantly improved results.

References

1.
Galun
,
M.
,
Sharon
,
E.
,
Basri
,
R.
, and
Brandt
,
A.
,
2003
, “
Texture Segmentation by Multiscale Aggregation of Filter Responses and Shape Elements
,”
Proceedings of the IEEE Int'l Conference Computer Vision
, pp.
716
723
.
2.
He
,
X.
,
Zemel
,
R. S.
, and
Carreira-Perpinan
,
M. A.
,
2004
, “
Multiscale Conditional Random Fields for Image Labeling
”,
Proceedings of IEEE CVPR
.
3.
Mignotte
,
M.
,
2012
, “
MDS-based Segmentation Model for the Fusion of Contour and Texture Cues in Natural Images
,”
Comput. Vis. Image Understanding
,
116
, pp.
981
990
.10.1016/j.cviu.2012.05.002
4.
Shotton
,
J.
,
Winn
,
J. M.
,
Rother
,
C.
, and
Criminisi
,
A.
,
2006
, “
TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation
,”
Proceedings of the Sixth European Conference Computer Vision
, pp.
1
15
.
5.
Borenstein
,
E.
, and
Malik
,
J.
,
2006
, “
Shape Guided Object Segmentation
,”
IEEE Conference on Computer Vision and Pattern Recognition
.
6.
Kim
,
J.
, and
Grauman
,
K.
,
2012
, “
Shape Sharing for Object Segmentation
,”
Proceedings of European Conference on Computer Vision (ECCV)
.
7.
Leibe
,
B.
,
Leonardis
,
A.
, and
Schiele
,
B.
,
2004
, “
Combined Object Categorization and Segmentation with an Implicit Shape Model
,”
Proceedings of the Workshop Sixth European Conference Computer Vision
, pp.
17
32
.
8.
Munim
,
A. E.
, and
Farag
,
A. A.
,
2005
, “
A Shape-Based Segmentation Approach: An Improved Technique using Level Sets
,”
Proceedings of the 10th IEEE Int'l Conference
Computer Vision
, pp.
930
935
.10.1109/ICCV.2005.19
9.
Huang
,
R.
,
Sang
,
N.
,
Luo
,
D.
, and
Tang
,
Q.
,
2011
,”
Image Segmentation Via Coherent Clustering in L*a*b* Color Space
,”
Pattern Recognit. Lett.
,
32
, pp.
891
902
.10.1016/j.patrec.2011.01.013
10.
Borenstein
,
E.
,
Sharon
,
E.
, and
Ullman
,
S.
,
2004
, “
Combining Top–Down and Bottom–Up Segmentation
,”
Proceedings of the IEEE Conference Computer Vision and Pattern Recognition
.
11.
Mori
,
G.
,
2005
, “
Guiding Model Search using Segmentation
,”
Proceedings of the 10th IEEE Int'l Conference Computer Vision
, pp.
1417
1423
.
12.
Borenstein
,
E.
, and
Ullman
,
S.
,
2004
, “
Learning to Segment
,”
Proceedings of the Eighth European Conference Computer Vision
, pp.
315
328
.
13.
Russell
,
B. C.
,
Freeman
,
W. T.
,
Efros
,
A. A.
,
Sivic
,
J.
, and
Zisserman
,
A.
,
2006
, “
Using Multiple Segmentations to Discover Objects and Their Extent in Image Collections
,”
Proceedings of the IEEE Conference Computer Vision and Pattern Recognition
, pp.
1605
1614
.
14.
Levin
,
A.
, and
Weiss
,
Y.
,
2006
, “
Learning to Combine Bottom–Up and Top–Down Segmentation
,”
Proceedings of the Ninth European Conference Computer Vision
, pp.
581
594
.
15.
Cour
,
T.
, and
Shi
,
J.
,
2007
, “
Recognizing Objects by Piecing Together the Segmentation Puzzle
,”
Proceedings of the IEEE Conference Computer Vision and Pattern Recognition
, pp.
1
8
.
16.
Sharon
,
E.
,
Brandt
,
A.
, and
Basri
,
R.
,
2001
, “
Segmentation and Boundary Detection Using Multiscale Intensity Measurements
,”
Proceedings of the IEEE Conference Computer Vision and Pattern Recognition
, pp.
469
476
.
17.
Zhao
,
L.
, and
Davis
,
L. S.
,
2005
, “
Closely Coupled Object Detection and Segmentation
,”
Proceedings of the 10th IEEE Int'l Conference Computer Vision
, pp.
454
461
.
18.
Yu
,
S. X.
, and
Shi
,
J.
,
2003
, “
Object-Specific Figure-Ground Segregation
,”
Proceedings of the IEEE Conference Computer Vision and Pattern Recognition
, pp.
39
45
.
19.
Cao
,
L.
, and
Fei-Fei
,
L.
,
2007
, “
Spatially Coherent Latent Topic Model for Concurrent Segmentation and Classification of Objects and Scenes
,”
Proceedings of the 11th IEEE Int'l Conference Computer Vision
, pp.
1
8
.
20.
Harris
,
C.
, and
Stephens
,
M.
,
1988
, “
A Combined Corner and Edge Detection
,”
Proceedings of the Fourth Alvey Vision Conference
, pp.
147
151
.
21.
Borenstein
,
E.
, and
Ullman
,
S.
,
2002
, “
Class-Specific, Top–Down Segmentation
,”
Proceedings of the Seventh European Conference Computer Vision
, pp.
109
124
.
22.
Liu
,
G.
,
Lin
,
Z.
,
Yu
,
Y.
, and
Tang
,
X.
,
2010
, “
Unsupervised Object Segmentation with a Hybrid Graph Model(HGM)
,”
IEEE transactions on pattern Analysis and Machine Intelligence
,
32
(
5
), pp.
910
924
.10.1109/TPAMI.2010.31
23.
Winn
,
J. M.
, and
Jojic
,
N.
,
2005
, “
Locus: Learning Object Classes with Unsupervised Segmentation
,”
Proceedings of the 10th IEEE Int'l Conference Computer Vision
, pp.
756
763
.
You do not currently have access to this content.