Monte Carlo (MC) technique prevails in probabilistic design simulation, such as in statistical tolerance analysis and synthesis. A quasi-Monte Carlo (e.g., number theoretic net method (NT-net)) with better computation efficiency over MC has recently attracted interests in application. In spite of a comprehensive case study (Huang et al., 2004, “Tolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical Net Method (NT-net),” Int. J. Flexible Manuf. Syst., 16, pp. 65–90 and Zhou et al., 2001, “Sequential Algorithm Based on Number Theoretic Method for Tolerance Analysis and Synthesis,” ASME J. Manuf. Sci. Eng., 123(3), pp. 490–493) for comparison between NT-net and MC, a method for sample size determination of NT-net is still not available. Combinatorial theory and the solution of occupancy problem are used for estimating equivalent sample sizes of MC and NT-net, allowing the NT-net sample size determination in application. A multivariate Chebyshev polynomial with variant coefficients is used to represent generic design functions for validation. The results are verified by case studies.

References

1.
Cvetko
,
R.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
,
1998
, “
New Metrics for Evaluating Monte Carlo Tolerance Analysis of Assemblies
,”
Proc. of 1998 ASME IMEC
,
Anaheim, CA
,
Nov 15–20
.
2.
Cai
,
W.
,
Hsieh
,
C.
,
Long
,
Y.
,
Marin
,
S. P.
, and
Oh
,
K. P.
,
2006
, “
Digital Panel Assembly Methodologies and Applications for Compliant Sheet Metals
,”
ASME J. Manuf. Sci. Eng.
,
128
, pp.
270
279
.10.1115/1.2112967
3.
Nigam
,
S. D.
, and
Turner
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput.-Aided Des.
,
27
(
1
), pp.
6
15
.10.1016/0010-4485(95)90748-5
4.
Kim
,
P.
, and
Ding
,
Y.
,
2005
, “
Optimal Engineering System Design Guided by Data-Mining Methods
,”
Technometrics
,
47
(
3
), pp.
336
348
.10.1198/004017005000000157
5.
Huang
,
W.
,
Phoomboplab
T.
, and
Ceglarek
,
D.
,
2009
, “
Process Capability Surrogate Model Based Tolerance Synthesis of Multi Station Manufacturing Systems (MMS)
,”
IIE Trans., Qual. Reliab. Eng.
,
41
, pp.
309
322
.
6.
Huang
,
W.
,
Ceglarek
,
D.
, and
Zhou
,
Z.
,
2004
, “
Tolerance Analysis for Design of Multistage Manufacturing Processes Using Number-Theoretical Net Method (NT-net)
,”
Int. J. Flexible Manuf. Syst.
,
16
, pp.
65
90
.10.1023/B:FLEX.0000039173.07009.8a
7.
Zhou
,
Z. G.
,
Huang
,
W.
, and
Zhang
,
L.
,
2001
, “
Sequential Algorithm Based on Number Theoretic Method for Tolerance Analysis and Synthesis
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
490
493
.10.1115/1.1378795
8.
Korobov
,
N. M.
,
1959
, “
The Approximate Computation of Multiple Integrals
,”
Dokl. Akad. Nauk SSSR
,
124
, pp.
1207
1210
.
9.
Korobov
,
N. M.
,
1959
, “
Computation of Multiple Integrals by the Method of Optimal Coefficients
,”
Vestn. Mosk. Univ., Ser. Mat., Mekh., Astron., Fiz., Khim.
,
4
, pp.
19
25
.
10.
Korobov
,
N. M.
,
1963
,
Number Theoretic Methods in Approximate Analysis
,
Fizmatigiz
,
Moscow
.
11.
Hua
,
L. K.
, and
Wang
,
Y.
,
1961
,
The Approximate Calculation of Integration
,
Science
,
Beijing
(in Chinese).
12.
Hua
,
L. K.
, and
Wang
,
Y.
,
1963
,
Numerical Integration and Its Applications
,
Science
,
Peking
(in Chinese).
13.
Hua
,
L. K.
, and
Wang
,
Y.
,
1981
,
Applications of Number Theory to Approximation Analysis
,
Springer-Verlag
,
Berlin
.
14.
Niederreiter
,
H.
,
1978
, “
Quasi-Monte Carlo Methods and Pseudo-random Numbers
,”
Bull. Am. Math. Soc.
,
84
, pp.
957
1041
.10.1090/S0002-9904-1978-14532-7
15.
Niederreiter
,
H.
,
1987
, “
Point Sets and Sequences With Small Discrepancy
,”
Monatsh. Math.
,
104
, pp.
273
337
.10.1007/BF01294651
16.
Niederreiter
,
H.
,
1992
,
Random Number Generation and Quasi-Monte Carlo Methods
,
SIAM
,
Philadelphia
.
17.
Kiefer
,
J.
,
1961
, “
Optimum Designs in Regression Problems II
,”
Ann. Math. Stat.
,
32
, pp.
298
325
.10.1214/aoms/1177705160
18.
Sloan
,
I. H.
, and
Kachoyan
,
P.
,
1987
, “
Lattice Methods for Multiple Integration: Theory, Error Analysis and Examples
,”
SIAM J. Numer. Anal.
,
24
(
1
), pp.
116
128
.10.1137/0724010
19.
Sloan
,
I. H.
, and
Joe
,
S.
, 1
994
,
Lattice Methods for Multiple Integration
,
Oxford University Press
,
Oxford
.
20.
Hickernell
,
F. J.
,
1998
, “
A Generalized Discrepancy and Quadrature Error Bound
,”
Math. Comput.
,
67
(
221
), pp.
299
322
.10.1090/S0025-5718-98-00894-1
21.
Fang
,
K. T.
, and
Wang
,
Y.
,
1994
,
Number-Theoretical Methods in Statistics
,
Chapman & Hall
,
London
.
22.
Fang
,
K. T.
,
Hichernell
,
F. J.
, and
Niederreiter
,
H.
,
2000
,
Monte Carlo and Quasi-Monte Carlo Methods
,
Springer-Verlag
,
Berlin
.
23.
Shapiro
,
S. S.
, and
Gross
,
A.
,
1981
,
Statistical Modeling Techniques
,
Marcel Dekker
,
New York.
24.
Creveling
,
C. M.
,
1997
,
Tolerance Design: A Handbook for Developing Optimal Specifications
,
Addison-Wesley
,
Reading, MA
.
25.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
,
2007
, “
Stream-of-Variation (SOVA) Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multi Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
832
842
.10.1115/1.2738953
26.
Feller
,
W.
,
1968
,
Introduction to Probability Theory and Its Applications
, 3rd ed.,
Wiley
,
New York
.
27.
Johnson
,
N. L.
, and
Kotz
,
S.
,
1977
,
Urn Models and Their Applications
,
Wiley
,
New York
.
28.
Kolchin
,
V. F.
,
Sevastyanoy
,
B. A.
, and
Chistyakov
,
V. P.
,
1978
,
Random Allocations
,
Wiley
,
New York
.
29.
Huang
,
W.
,
Kong
,
Z.
, and
Chennamaraju
,
A.
,
2010
, “
Fixture Robust Design by Sequential Space Filling Methods in Multi-Station Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
4
), p.
041001
.10.1115/1.3503880
You do not currently have access to this content.