Skip Nav Destination
Issues
April 2009
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
An Exact Fourier Series Method for the Vibration Analysis of Multispan Beam Systems
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021001.
doi: https://doi.org/10.1115/1.3079681
Topics:
Boundary-value problems
,
Displacement
,
Fourier series
,
Springs
,
Vibration
,
Vibration analysis
,
Stiffness
,
Polynomials
Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021002.
doi: https://doi.org/10.1115/1.3079682
Topics:
Continuum mechanics
,
Deformation
,
Finite element analysis
,
Shapes
Stability and Stationary Response of a Skew Jeffcott Rotor With Geometric Uncertainty
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021003.
doi: https://doi.org/10.1115/1.3079683
Topics:
Equations of motion
,
Excitation
,
Rotation
,
Rotors
,
Stability
,
Uncertainty
,
Machinery
,
Geometry
,
Disks
,
Steady state
An Efficient Multibody Divide and Conquer Algorithm and Implementation
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021004.
doi: https://doi.org/10.1115/1.3079823
Topics:
Algorithms
,
Chain
On the Formal Equivalence of Normal Form Theory and the Method of Multiple Time Scales
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021005.
doi: https://doi.org/10.1115/1.3079824
A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021006.
doi: https://doi.org/10.1115/1.3079825
Topics:
Deformation
,
Finite element analysis
,
Pendulums
,
Multibody systems
,
Cantilever beams
,
Deflection
,
Stress
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021007.
doi: https://doi.org/10.1115/1.3079826
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021008.
doi: https://doi.org/10.1115/1.3079784
Topics:
Algorithms
,
Equations of motion
,
Kinematics
,
Multibody dynamics
,
Preservation
,
Simulation
,
Errors
,
Damping
,
Numerical analysis
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021009.
doi: https://doi.org/10.1115/1.3079783
Topics:
Equations of motion
,
Hamilton's principle
,
Multibody dynamics
,
Simulation
,
Multibody systems
,
Dynamics (Mechanics)
,
Pendulums
,
Displacement
,
Stability
,
Errors
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021010.
doi: https://doi.org/10.1115/1.3079785
Topics:
Microbeams
,
Resonance
,
Sensors
,
Switches
,
Cantilevers
,
Frequency response
,
Cantilever beams
,
Excitation
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021011.
doi: https://doi.org/10.1115/1.3079786
Topics:
Kinematics
,
Optimization
,
Topology
,
Design
,
Genetic algorithms
Email alerts
RSS Feeds
A new triangular thin shell element based on the absolute nodal coordinate formulation for complex surfaces
J. Comput. Nonlinear Dynam
Data-Driven Modeling of Tire-Soil Interaction with POD-Based Model Order Reduction
J. Comput. Nonlinear Dynam
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)