Abstract

This work proposes a methodology for in situ parameter identification using system-level measurements of (flexible) multibody systems, opposed to dedicated component-level identification. The sensitivity information employed for the optimization is obtained using the adjoint variable method (AVM). This method has the advantage of obtaining sensitivity information at a computational cost independent of the amount of model parameters. The underlying flexible multibody formulation employed is a novel approach called the flexible natural coordinates formulation (FNCF). This formulation combines the advantageous properties of the floating frame of reference formulation (FFRF) and the generalized component mode synthesis (GCMS) methods and results in a constant mass and stiffness matrix with quadratic constraint equations. This work shows how the specific structure of equations obtained through FNCF drastically reduces the complexity of the AVM as the simulation derivatives can be readily obtained and are of limited order. The proposed approach has been implemented in an in-house object-oriented matlab multibody code. The methodology is illustrated by identifying 13 model parameters of a MacPherson suspension model, in situ and using system-level measurements.

References

1.
Dzierzek
,
S.
,
2000
, “
Experiment-Based Modeling of Cylindrical Rubber Bushings for the Simulation of Wheel Suspension Dynamic Behavior
,”
SAE Trans.
,
109
(
6
), pp.
78
85
.10.4271/2000-01-0095
2.
Berg
,
M.
,
1998
, “
A Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis
,”
Veh. Syst. Dyn.
,
30
(
3–4
), pp.
197
212
.10.1080/00423119808969447
3.
Sedlaczek
,
K.
,
Dronka
,
S.
, and
Rauh
,
J.
,
2011
, “
Advanced Modular Modelling of Rubber Bushings for Vehicle Simulations
,”
Veh. Syst. Dyn.
,
49
(
5
), pp.
741
759
.10.1080/00423111003739806
4.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
(Springer Series in Operations Research), 2nd ed.,
Springer
,
New York
.
5.
Serban
,
R.
, and
Freeman
,
J. S.
,
2001
, “
Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems
,”
Multibody Syst. Dyn.
,
5
(
4
), pp.
335
350
.10.1023/A:1011434711375
6.
Haug
,
E. J.
,
1987
, “
Design Sensitivity Analysis of Dynamic Systems
,”
Computer Aided Optimal Design: Structural and Mechanical Systems
(NATO ASI Series),
Springer
,
Berlin, Heidelberg
, pp.
705
755
.
7.
Bestle
,
D.
, and
Eberhard
,
P.
,
1992
, “
Analyzing and Optimizing Multibody Systems
,”
Mech. Struct. Mach.
,
20
(
1
), pp.
67
92
.10.1080/08905459208905161
8.
Nachbagauer
,
K.
,
Oberpeilsteiner
,
S.
,
Sherif
,
K.
, and
Steiner
,
W.
,
2015
, “
The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
61011
.10.1115/1.4028417
9.
Bischof
,
C. H.
,
1996
, “
On the Automatic Differentiation of Computer Programs and an Application to Multibody Systems
,”
IUTAM Symposium on Optimization of Mechanical Systems, Solid Mechanics and Its Applications
,
Springer
,
Dordrecht, The Netherlands
, pp.
41
48
.
10.
Vermaut
,
M.
,
Naets
,
F.
, and
Desmet
,
W.
,
2018
, “
A Flexible Natural Coordinates Formulation (FNCF) for the Efficient Simulation of Small-Deformation Multibody Systems
,”
Int. J. Numer. Methods Eng.
,
115
(
11
), pp.
1353
1370
.10.1002/nme.5847
11.
Schmidt
,
T.
, and
Müller
,
P. C.
,
1993
, “
A Parameter Estimation Method for Multibody Systems With Constraints
,”
Advanced Multibody System Dynamics
, Vol.
20
,
W.
Schiehlen
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
427
432
.
12.
Ayusawa
,
K.
,
Venture
,
G.
, and
Nakamura
,
Y.
,
2014
, “
Identifiability and Identification of Inertial Parameters Using the Underactuated Base-Link Dynamics for Legged Multibody Systems
,”
Int. J. Rob. Res.
,
33
(
3
), pp.
446
468
.10.1177/0278364913495932
13.
Haug
,
E. J.
, ed.,
1993
,
Concurrent Engineering: Tools and Technologies for Mechanical System Design
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
14.
Zhu
,
Y.
,
2014
, “
Sensitivity Analysis and Optimization of Multibody Systems
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
15.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
, Cambridge, UK
16.
Pechstein
,
A.
,
Reischl
,
D.
, and
Gerstmayr
,
J.
,
2013
, “
A Generalized Component Mode Synthesis Approach for Flexible Multibody Systems With a Constant Mass Matrix
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011019
.10.1115/1.4007191
17.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.10.2514/3.2947
18.
Craig
,
R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J. Am. Inst. Aeronaut. Astronaut.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
19.
Pacejka
,
H. B.
, and
Bakker
,
E.
,
1992
, “
The Magic Formula Tyre Model
,”
Veh. Syst. Dyn.
,
21
(
Suppl. 001
), pp.
1
18
.10.1080/00423119208969994
20.
Risaliti
,
E.
,
Tamarozzi
,
T.
,
Vermaut
,
M.
,
Cornelis
,
B.
, and
Desmet
,
W.
,
2019
, “
Multibody Model Based Estimation of Multiple Loads and Strain Field on a Vehicle Suspension System
,”
Mech. Syst. Signal Process.
,
123
, pp.
1
25
.10.1016/j.ymssp.2018.12.024
21.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
Digital Object Identifier (On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program., Ser. A
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
You do not currently have access to this content.