Abstract

Engineering structures are often designed using detailed finite element (FE) models. Although these models can capture nonlinear effects, performing nonlinear dynamic analysis using FE models is often prohibitively computationally expensive. Nonlinear reduced-order modeling provides a means of capturing the principal dynamics of an FE model in a smaller, computationally cheaper reduced-order model (ROM). One challenge in formulating nonlinear ROMs is the strong coupling between low- and high-frequency modes, a feature we term quasi-static coupling. An example of this is the coupling between bending and axial modes of beams. Some methods for formulating ROMs require that these high-frequency modes are included in the ROM, thus increasing its size and adding computational expense. Other methods can implicitly capture the effects of the high-frequency modes within the retained low-frequency modes; however, the resulting ROMs are normally sensitive to the scaling used to calibrate them, which may introduce errors. In this paper, quasi-static coupling is first investigated using a simple oscillator with nonlinearities up to the cubic order. ROMs typically include quadratic and cubic nonlinear terms, however here it is demonstrated mathematically that the ROM describing the oscillator requires higher-order nonlinear terms to capture the modal coupling. Novel ROMs, with high-order nonlinear terms, are then shown to be more accurate, and significantly more robust to scaling, than standard ROMs developed using existing approaches. The robustness of these novel ROMs is further demonstrated using a clamped–clamped beam, modeled using commercial FE software.

References

1.
Blevins
,
R. D.
,
Holehouse
,
I.
, and
Wentz
,
K. R.
,
1993
, “
Thermoacoustic Loads and Fatigue of Hypersonic Vehicle Skin Panels
,”
J. Aircr.
,
30
(
6
), pp.
971
978
.10.2514/3.46441
2.
Gordon
,
R. W.
, and
Hollkamp
,
J. J.
,
2011
, “
Reduced-Order Models for Acoustic Response Prediction
,” Air Force Research Laboratory, Dayton, OH, Report No. AFRL-RB-WP-TR-2011-3040.
3.
Shearer
,
C. M.
, and
Cesnik
,
C. E. S.
,
2007
, “
Nonlinear Flight Dynamics of Very Flexible Aircraft
,”
J. Aircr.
,
44
(
5
), pp.
1528
1545
.10.2514/1.27606
4.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1991
,
Nonlinear Oscillations
,
Wiley
,
Weinheim, Germany
.
5.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley
, Weinheim, Germany.
6.
Jezequel
,
L.
, and
Lamarque
,
C. H.
,
1991
, “
Analysis of Non-Linear Dynamical Systems by the Normal Form Theory
,”
J. Sound Vib.
,
149
(
3
), pp.
429
459
.10.1016/0022-460X(91)90446-Q
7.
Hill
,
T. L.
,
Neild
,
S. A.
, and
Cammarano
,
A.
,
2016
, “
An Analytical Approach for Detecting Isolated Periodic Solution Branches in Weakly Nonlinear Structures
,”
J. Sound Vib.
,
379
, pp.
150
165
.10.1016/j.jsv.2016.05.030
8.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Dercole
,
F.
,
Oldeman
,
B. E.
,
Paffenroth
,
R. C.
,
Sandstede
,
B.
,
Wang
,
X. J.
, and
Zhang
,
C.
,
2007
, “
AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations
,” Concordia University, Montreal, QC, Canada, accessed Apr. 20, 2020, http://cmvl.cs.concordia.ca/
9.
Schilder
,
F.
, and
Dankowicz
,
H.
,
2015
, “
Continuation Core (COCO)
,” SourceForge.net, accessed May 1, 2019, http://sourceforge.net/projects/cocotools/
10.
Kuether
,
R. J.
,
2014
, “
Nonlinear Modal Substructuring of Geometrically Nonlinear Finite Element Models
,” Ph.D. thesis, The University of Wisconsin-Madison, Madison, WI.
11.
Mignolet
,
M. P.
,
Przekop
,
A.
,
Rizzi
,
S. A.
, and
Spottswood
,
S. M.
,
2013
, “
A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures
,”
J. Sound Vib.
,
332
(
10
), pp.
2437
2460
.10.1016/j.jsv.2012.10.017
12.
Dassault Systèmes,
2017
, “
Abaqus Documentation
,” Dassault Systèmes, Providence, RI.
13.
Muravyov
,
A. A.
, and
Rizzi
,
S. A.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
81
(
15
), pp.
1513
1523
.10.1016/S0045-7949(03)00145-7
14.
Rizzi
,
S. A.
, and
Przekop
,
A.
,
2005
, “
The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation
,” NASA, Hampton, VA, Report No. TP-2005-213943.
15.
Segalman
,
D. J.
, and
Dohrmann
,
C. R.
,
1996
, “
A Method for Calculating the Dynamics of Rotating Flexible Structures—Part 1: Derivation
,”
J. Sound Vib.
,
118
(
3
), pp.
313
317
.10.1115/1.2888183
16.
Segalman
,
D. J.
,
Dohrmann
,
C. R.
, and
Slavin
,
A. M.
,
1996
, “
A Method for Calculating the Dynamics of Rotating Flexible Structures—Part 2: Example Calculations
,”
J. Sound Vib.
,
118
(
3
), pp.
318
322
.10.1115/1.2888184
17.
Rizzi
,
S. A.
, and
Przekop
,
A.
,
2008
, “
System Identification-Guided Basis Selection for Reduced-Order Nonlinear Response Analysis
,”
J. Sound Vib.
,
315
(
3
), pp.
467
485
.10.1016/j.jsv.2007.12.031
18.
Tartaruga
,
I.
,
Elliott
,
A.
,
Hill
,
T. L.
,
Neild
,
S. A.
, and
Cammarano
,
A.
,
2019
, “
The Effect of Nonlinear Cross-Coupling on Reduced-Order Modelling
,”
Int. J. Non-Linear Mech.
,
116
, pp.
7
17
.10.1016/j.ijnonlinmec.2019.05.006
19.
Touzé
,
C.
,
Thomas
,
O.
, and
Chaigne
,
A.
,
2004
, “
Hardening/Softening Behaviour in Non-Linear Oscillations of Structural Systems Using Non-Linear Normal Modes
,”
J. Sound Vib.
,
273
(
1–2
), pp.
77
101
.10.1016/j.jsv.2003.04.005
20.
Touzé
,
C.
, and
Amabili
,
M.
,
2006
, “
Nonlinear Normal Modes for Damped Geometrically Nonlinear Systems: Application to Reduced-Order Modelling of Harmonically Forced Structures
,”
J. Sound Vib.
,
298
(
4–5
), pp.
958
981
.10.1016/j.jsv.2006.06.032
21.
Hollkamp
,
J. J.
, and
Gordon
,
R. W.
,
2008
, “
Reduced-Order Models for Nonlinear Response Prediction: Implicit Condensation and Expansion
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1139
1153
.10.1016/j.jsv.2008.04.035
22.
Kuether
,
R. J.
,
Deaner
,
B. J.
,
Hollkamp
,
J. J.
, and
Allen
,
M. S.
,
2015
, “
Evaluation of Geometrically Nonlinear Reduced-Order Models With Nonlinear Normal Modes
,”
AIAA J.
,
53
(
11
), pp.
3273
3285
.10.2514/1.J053838
23.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes—Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
You do not currently have access to this content.