This paper presents an adaptive controller to achieve consensus tracking for the fractional-order linear time invariant swarm systems in which the matrices describing the agent dynamics and the interactive dynamics between agents are unknown. This controller consists of two parts: an adaptive stabilizer and an adaptive tracker. The adaptive stabilizer guarantees the asymptotic swarm stability of the considered swarm system. Also, the adaptive tracker enforces the system agents to track a desired trajectory while achieving consensus. Numerical simulation results are presented to show the effectiveness of the proposed controller.

References

1.
Helbing
,
D.
,
Farkas
,
I.
, and
Vicsek
,
T.
,
2000
, “
Simulating Dynamical Features of Escape Panic
,”
Nature
,
407
(
6803
), pp.
487
490
.10.1038/35035023
2.
Parrish
,
J. K.
,
1999
, “
Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation
,”
Science
,
284
(
5411
), pp.
99
101
.10.1126/science.284.5411.99
3.
Liu
,
Q.
,
Liao
,
X. F.
,
Guo
,
S. T.
, and
Wu
,
Y.
,
2009
, “
Stability of Bifurcating Periodic Solutions for a Single Delayed Inertial Neuron Model Under Periodic Excitation
,”
Nonlinear Anal.: Real World Appl.
,
10
(
4
), pp.
2384
2395
.10.1016/j.nonrwa.2008.04.025
4.
Czirok
,
A.
, and
Vicsek
,
T.
,
2000
, “
Collective Behavior of Interacting Self Propelled Particles
,”
Physica A
,
281
(
1–4
), pp.
17
29
.10.1016/S0378-4371(00)00013-3
5.
van Ast
,
J.
,
Babuska
,
R.
, and
De Schutter
,
B.
,
2008
, “
A General Modeling Framework for Swarms
,”
Proceedings of the IEEE World Congress on Computational Intelligence
, pp.
3795
3800
.
6.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
, Vol.
4
, pp.
1942
1948
.
7.
Clerc
,
M.
, and
Kennedy
,
J.
,
2002
, “
The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
,
6
(
1
), pp.
58
73
.10.1109/4235.985692
8.
Bonabeau
,
E.
,
Dorigo
,
M.
, and
Theraulaz
,
G.
,
1999
,
Swarm Intelligence: From Natural to Artificial Systems
,
Oxford University
,
New York
.
9.
Kennedy
,
J.
,
1997
, “
The Particle Swarm: Social Adaptation of Knowledge
,”
Proceedings of the IEEE International Conference on Evolutionary Computation
, pp.
303
308
.
10.
Cai
,
N.
,
Xi
,
J. X.
, and
Zhong
,
Y. S.
,
2009
, “
Swarm Stability of High-Order Linear Time-Invariant Swarm Systems
,”
Control Theory Appl.
,
5
(
2
), pp.
402
408
.
11.
Lin
,
Z.
,
Francis
,
B.
, and
Maggiore
,
M.
,
2005
, “
Necessary and Sufficient Graphical Conditions for Formation Control of Unicycles
,”
IEEE Trans. Autom. Control
,
50
(
1
), pp.
121
127
.10.1109/TAC.2004.841121
12.
Lafferriere
,
G.
,
Williams
,
A.
,
Caughman
,
J.
, and
Veerman
,
J. J. P.
,
2005
, “
Decentralized Control of Vehicle Formations
,”
Syst. Control Lett.
,
54
(
9
), pp.
899
910
.10.1016/j.sysconle.2005.02.004
13.
Cortes
,
J.
,
Martinez
,
S.
, and
Bullo
,
F.
,
2006
, “
Robust Rendezvous for Mobile Autonomous Agents via Proximity Graphs in Arbitrary Dimensions
,”
IEEE Trans. Autom. Control
,
51
(
8
), pp.
1289
1298
.10.1109/TAC.2006.878713
14.
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
,
2007
, “
On the Rendezvous Problem for Multiple Nonholonomic Agents
,”
IEEE Trans. Autom. Control
,
52
(
5
), pp.
916
922
.10.1109/TAC.2007.895897
15.
Su
,
H.
,
Wang
,
X.
, and
Lin
,
Z.
,
2009
, “
Flocking of Multi-Agents With a Virtual Leader
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
293
307
.10.1109/TAC.2008.2010897
16.
Olfati-Saber
,
R.
, and
Murray
,
R. M.
,
2004
, “
Consensus Problems in Networks of Agents With Switching Topology and Time-Delays
,”
IEEE Trans. Autom. Control
,
49
(
9
), pp.
1520
1533
.10.1109/TAC.2004.834113
17.
Ren
,
W.
, and
Beard
,
R. W.
,
2005
, “
Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
655
661
.10.1109/TAC.2005.846556
18.
Tang
,
Z. J.
,
ZhuHuang
,
T.
,
LiangShao
,
J.
, and
PingHu
,
J.
,
2012
Consensus of Second-Order Multi-Agent Systems With Nonuniform Time-Varying Delays
,”
Neurocomputing
,
97
, pp.
410
414
.10.1016/j.neucom.2012.05.025
19.
Liu
,
C. L.
, and
Liu
,
F.
,
2012
, “
Dynamical Consensus Seeking of Second-Order Multi-Agent Systems Based on Delayed State Compensation
,”
Syst. Control Lett.
,
61
(
12
), pp.
1235
1241
.10.1016/j.sysconle.2012.09.006
20.
Xiao
,
F.
, and
Wang
,
L.
,
2007
, “
Consensus Problems for High-Dimensional Multiagent Systems
,”
Control Theory Appl.
,
1
(
3
), pp.
830
837
.10.1049/iet-cta:20060014
21.
Ren
,
W.
,
Moore
,
K. L.
, and
Chen
,
Y.
,
2007
, “
High-Order and Model Reference Consensus Algorithms in Cooperative Control of Multi-Vehicle Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
5
), pp.
678
688
.10.1115/1.2764508
22.
Wieland
,
P.
,
Kim
,
J.
,
Scheu
,
H.
, and
Allgower
,
F.
,
2008
, “
On Consensus in Multi-Agent Systems With Linear High-Order Agents
,”
Proceedings of the IFAC World Congress
,
Seoul, Korea
, Vol.
17
, pp.
1541
1546
.
23.
Xi
,
J.
,
Shi
,
Z.
, and
Zhonga
,
Y.
,
2011
, “
Consensus Analysis and Design for High-Order Linear Swarm Systems With Time-Varying Delays
,”
Physica A
,
390
(
23–24
), pp.
4114
4123
.10.1016/j.physa.2011.06.045
24.
Tian
,
Y. P.
, and
Zhang
,
Y.
,
2012
, “
Brief Paper High-Order Consensus of Heterogeneous Multi-Agent Systems With Unknown Communication Delays
,”
Automatica
,
48
(
6
), pp.
1205
1212
.10.1016/j.automatica.2012.03.017
25.
Ren
,
W.
,
2010
, “
Consensus Tracking Under Directed Interaction Topologies: Algorithms and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
230
237
.10.1109/TCST.2009.2015285
26.
Magin
,
R. L.
,
2010
, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1586
1593
.10.1016/j.camwa.2009.08.039
27.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
28.
Cafagna
,
D.
,
2007
, “
Fractional Calculus: A Mathematical Tool From the Past for Present Engineers
,”
IEEE Ind. Electron. Mag.
,
1
(
2
), pp.
35
40
.10.1109/MIE.2007.901479
29.
Cao
,
Y.
,
Li
,
Y.
,
Ren
,
W.
, and
Chen
,
Y. Q.
,
2010
, “
Distributed Coordination of Networked Fractional-Order Systems
,”
IEEE Trans. Syst. Man Cybern., Part B, Cybern.
,
40
(
2
), pp.
362
370
.10.1109/TSMCB.2009.2024647
30.
Cao
,
Y.
, and
Ren
,
W.
,
2010
, “
Distributed Formation Control for Fractional Order Systems: Dynamic Interaction and Absolute/Relative Damping
,”
Syst. Control Lett.
,
59
(
3–4
), pp.
233
240
.10.1016/j.sysconle.2010.01.008
31.
Sun
,
W.
,
Li
,
Y.
,
Li
,
C.
, and
Chen
,
Y. Q.
,
2011
, “
Convergence Speed of a Fractional Order Consensus Algorithm Over Undirected Scale-Free Networks
,”
Asian J. Control
,
13
(
6
), pp.
936
946
.10.1002/asjc.390
32.
Naderi Soorki
,
M.
, and
Tavazoei
,
M. S.
,
2013
, “
Fractional-Order Linear Time Invariant Swarm Systems: Asymptotic Swarm Stability and Time Response Analysis
,”
Cent. Eur. J. Phys.
,
11
(
6
), pp.
845
854
.10.2478/s11534-013-0274-5
33.
Shen
,
J.
,
Cao
J.
, and
Lu
,
J.
,
2012
, “
Consensus of Fractional-Order Systems With Non-Uniform Input and Communication Delays
,”
Proc. Inst. Mech. Eng., Part I
,
226
(
2
), pp.
271
283
.10.1177/0959651811412132
34.
Shen
,
J.
, and
Cao
,
J.
,
2012
, “
Necessary and Sufficient Conditions for Consensus of Delayed Fractional-Order Systems
,”
Asian J. Control
,
14
(
6
), pp.
1690
1697
.10.1002/asjc.492
35.
Wang
,
Z.
,
Gu
,
D.
,
Meng
,
T.
, and
Zhao
,
Y.
,
2010
, “
Consensus Target Tracking in Multi-robot Systems. Intelligent Robotics and Applications
,”
Lect. Notes Comput. Sci.
,
6424
, pp.
724
735
.10.1007/978-3-642-16584-9
36.
Khoo
,
S.
,
Xie
,
L.
, and
Man
,
Zh.
,
2009
, “
Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems
,”
IEEE/ASME Trans. Mechatron.
,
14
(
2
), pp.
219
228
.10.1109/TMECH.2009.2014057
37.
David
,
S. A.
,
Balthazar
,
J. M.
,
Julio
,
B. H. S.
, and
Oliveira
,
C.
,
2012
, “
The Fractional-Nonlinear Robotic Manipulator: Modeling and Dynamic Simulations
,”
AIP Conf. Proc.
,
1493
, pp.
298
305
.10.1063/1.4765504
38.
Jezierski
,
E.
, and
Ostalczyk
,
P.
,
2009
, “
Fractional-Order Mathematical Model of Pneumatic Muscle Drive for Robotic Applications
,”
Robot Motion and Control
,
K. R.
Kozłowski
, ed.,
Springer
,
New York
, pp.
113
122
.
39.
Sjöberg
,
M.
, and
Kari
,
L.
,
2003
, “
Nonlinear Isolator Dynamics at Finite Deformations: An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model
,”
Nonlinear Dyn.
,
33
(
3
), pp.
323
336
.10.1023/A:1026037703124
40.
Mendes
,
R. V.
, and
Vázquez
,
L.
,
2007
, “
The Dynamical Nature of a Backlash System With and Without Fluid Friction
,”
Nonlinear Dyn.
,
47
(
4
), pp.
363
366
.10.1007/s11071-006-9035-y
41.
Jaulmes
,
R.
,
Pineau
,
J.
, and
Precup
,
D.
,
2007
, “
A Formal Framework for Robot Learning and Control Under Model Uncertainty
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2104
2110
.
42.
Su
,
Y.
,
Hong
,
Y.
, and
Huang
,
J.
,
2013
, “
A General Result on the Cooperative Robust Output Regulation for Linear Uncertain Multi-Agent Systems
,”
IEEE Trans. Autom. Control
,
58
(
5
), pp.
1275
1279
.10.1109/TAC.2012.2229837
43.
Wu
,
F.
,
Zilberstein
,
Sh.
, and
Chen
,
X.
,
2011
, “
Online Planning for Multi-Agent Systems With Bounded Communication
,”
Artif. Intell.
,
175
(
2
), pp.
487
511
.10.1016/j.artint.2010.09.008
44.
Stone
,
P.
, and
Veloso
,
M.
,
1998
, “
Communication in Domains With Unreliable, Single-Channel, Low-Bandwidth Communication
,”
Lect. Notes Comput. Sci.
,
1456
, pp.
85
97
.10.1007/BFb0033368
45.
Mikadze
,
I. S.
, and
Khocholava
,
V. V.
,
2004
, “
On a Model of Information Transmission Through Unreliable Communication Channel
,”
Autom. Remote Control
,
65
(
8
), pp.
1250
1254
.10.1023/B:AURC.0000038727.11628.4e
46.
Sinopoli
,
B.
,
Schenato
,
L.
,
Franceschetti
,
M.
, and
Poolla
,
K.
,
2005
, “
Optimal Control With Unreliable Communication: The TCP Case
,”
Proceedings of the American Control Conference
, pp.
3354
3359
.
47.
Hu
,
T. C.
,
Kahng
,
A. B.
, and
Robins
,
G.
,
1993
, “
Optimal Robust Path Planning in General Environments
,”
IEEE Trans. Rob. Autom.
,
9
(
6
), pp.
775
784
.10.1109/70.265921
48.
Li
,
Y.
, and
Chen
,
X.
,
2005
, “
Stability on Multi-Robot Formation With Dynamic Interaction Topologies
,”
Proceeding of the IEEE International Conference on Intelligent Robots and Systems
, pp.
1325
1330
.
49.
Carli
,
R.
,
Fagnani
,
F.
,
Speranzon
,
A.
, and
Zampieri
S.
,
2008
, “
Communication Constraints in the Average Consensus Problem
,”
Automatica
,
44
(
3
), pp.
671
684
.10.1016/j.automatica.2007.07.009
50.
Ren
,
W.
,
Beard
,
R. W.
, and
Atkins
,
E.
,
2005
, “
A Survey of Consensus Problems in Multi-Agent Coordination
,”
Proceedings of the American Control Conference
, pp.
1859
1864
.
51.
Li
,
Y.
, and
Chen
,
Y.
,
2012
, “
A Fractional Order Universal High Gain Adaptive Stabilizer
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
22
(
4
), p.
1250081
.10.1142/S0218127412500812
52.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.10.1109/9.739144
53.
Gazi
,
V.
, and
Passino
,
K. M.
,
2002
, “
A Class of Attraction/Repulsion Functions for Stable Swarm Aggregations
,”
Proceedings of the IEEE Conference on Decision and Control
, Vol.
3
,
Las Vegas, NV
, pp.
2842
2847
.
54.
Gazi
,
V.
, and
Passino
,
K. M.
,
2003
, “
Stability Analysis of Swarms
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
692
697
.10.1109/TAC.2003.809765
55.
Godsil
,
C.
, and
Royle
,
G.
,
2000
,
Algebraic Graph Theory
,
Springer
,
New York
.
56.
Caponetto
,
R.
,
Dongola
,
G.
,
Fortuna
,
L.
, and
Petras
,
I.
,
2010
,
Fractional Order Systems: Modeling and Control Applications
,
World Scientific
,
Singapore
.
57.
Zhong
,
F.
, and
Li
,
C.
,
2011
, “
Stability Analysis of Fractional Differential Systems With Order Lying in (1,2)
,”
Adv. Differ. Equ.
,
2011
, p.
213485
.
58.
Qian
,
D.
,
Li
,
C.
,
Agarwal
,
R. P.
, and
Wong
,
P. J. Y.
,
2010
, “
Stability Analysis of Fractional Differential System With Riemann–Liouville Derivative
,”
Math. Comput. Modell.
,
52
(
5–6
), pp.
862
874
.10.1016/j.mcm.2010.05.016
59.
Ioannou
,
P. A.
, and
Sun
,
J.
,
1996
,
Robust Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.