We study asymptotically the family of subharmonic responses of an essentially nonlinear oscillator forced by two closely spaced harmonics. By expressing the original oscillator in action-angle form, we reduce it to a dynamical system with three frequencies (two fast and one slow), which is amenable to a singular perturbation analysis. We then restrict the dynamics in neighborhoods of resonance manifolds and perform local bifurcation analysis of the forced subharmonic orbits. We find increased complexity in the dynamics as the frequency detuning between the forcing harmonics decreases or as the order of a secondary resonance condition increases. Moreover, we validate our asymptotic results by comparing them to direct numerical simulations of the original dynamical system. The method developed in this work can be applied to study the dynamics of strongly nonlinear (nonlinearizable) oscillators forced by multiple closely spaced harmonics; in addition, the formulation can be extended to the case of transient excitations.

1.
Nayfeh
,
A. H.
, and
Mook
,
D.
, 1985,
Nonlinear Oscillations
,
Wiley
,
New York
.
2.
Andrianov
,
I. V.
,
Awrejcewicz
,
J.
, and
Barantsev
,
R. G.
, 2003, “
Asymptotic Approaches in Mechanics: New Parameters and Procedures
,”
Appl. Mech. Rev.
0003-6900,
56
(
1
), pp.
87
110
.
3.
Verhulst
,
F.
, 2005,
Methods and Applications of Singular Perturbations
,
Springer-Verlag
,
Berlin
.
4.
Coppola
,
V. T.
, and
Rand
,
R. H.
, 1990, “
Averaging Using Elliptic Functions: Approximation of Limit Cycles
,”
Acta Mech.
0001-5970,
81
, pp.
125
142
.
5.
Belhaq
,
M.
, and
Lakrad
,
F.
, 2000, “
The Elliptic Multiple Scales Method for a Class of Autonomous Strongly Nonlinear Oscillators
,”
J. Sound Vib.
0022-460X,
234
(
3
), pp.
547
553
.
6.
Lakrad
,
F.
, and
Belhaq
,
M.
, 2002, “
Periodic Solutions of Strongly Nonlinear Oscillators by the Multiple Scales Method
,”
J. Sound Vib.
0022-460X,
258
(
4
), pp.
677
700
.
7.
Hu
,
H.
, and
Tang
,
J. H.
, 2005, “
A Convolution Integral Method for Certain Strongly Nonlinear Oscillators
,”
J. Sound Vib.
0022-460X,
285
, pp.
1235
1241
.
8.
He
,
J. -H.
, 2006, “
Some Asymptotic Methods for Strongly Nonlinear Equations
,”
Int. J. Mod. Phys. B
0217-9792,
20
(
10
), pp.
1141
1199
.
9.
Alam
,
M. S.
,
Haque
,
M. E.
, and
Hossain
,
M. B.
, 2007, “
A New Analytical Technique to Find Periodic Solutions of Nonlinear Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
1035
1045
.
10.
Persival
,
I.
, and
Richards
,
D.
, 1982,
Introduction to Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
11.
Byrd
,
P. F.
, and
Friedman
,
M. D.
, 1954,
Handbook of Elliptic Integrals for Engineers and Physicists
,
Springer-Verlag
,
Berlin
.
12.
Vakakis
,
A. F.
, and
Gendelman
,
O.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
42
48
.
13.
Arnold
,
V. I.
, 1988,
Dynamical Systems III, Encyclopedia of Mathematical Sciences
,
Springer-Verlag
,
Berlin
, Vol.
3
.
14.
Quinn
,
D.
, 1997, “
Resonance Capture in a Three Degree of Freedom Mechanical System
,”
Nonlinear Dyn.
0924-090X,
14
, pp.
309
333
.
15.
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
, 2008,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer-Verlag
,
Berlin
.
16.
Verhulst
,
F.
, 2006,
Nonlinear Differential Equations and Dynamical Systems
,
Springer-Verlag
,
Berlin
.
17.
Pilipchuk
,
V. N.
, 1985, “
The Calculation of Strongly Nonlinear Systems Close to Vibration-Impact Systems
,”
Prikl. Mat. Mekh.
0032-8235,
49
(
5
), pp.
572
578
.
18.
Pilipchuk
,
V. N.
, 1988, “
A Transformation for Vibrating Systems Based on a Non-Smooth Periodic Pair of Functions
,”
Doklady AN Ukr. SSR Ser. A
,
4
, pp.
37
40
.
19.
Pilipchuk
,
V. N.
,
Vakakis
,
A. F.
, and
Azeez
,
M. A. F.
, 1997, “
Study of a Class of Subharmonic Motions Using a Non-Smooth Temporal Transformation (NSTT)
,”
Physica D
0167-2789,
100
, pp.
145
164
.
You do not currently have access to this content.