The closed-loop dynamics of a chaotic electrostatic microbeam actuator are presented. The actuator was found to be an asymmetric two-well potential system with two distinct chaotic attractors: one of which occurs predominantly in the lower well and a second that visits a lower-well orbit and a two-well orbit. Bifurcation diagrams obtained by sweeping the ac voltage amplitudes and frequency are presented. Period doubling, reverse period doubling, and the one-well chaos through period doubling are observed in amplitude sweep. In frequency sweep, period doubling, one-well, and two-well chaos, superharmonic resonances and on and off chaotic oscillations are found.

1.
Epureanu
,
B. I.
,
Tang
,
L. S.
, and
Paidoussis
,
M. P.
, 2004, “
Exploiting Chaotic Dynamics for Detecting Parametric Variations in Aeroelastic Systems
,”
AIAA J.
0001-1452,
42
(
4
), pp.
728
735
.
2.
Epureanu
,
B.
, and
Yin
,
S. -H.
, 2004, “
Identification of Damage in an Aeroelastic System Based on Attractor Deformations
,”
Comput. Struct.
0045-7949,
82
(
31–32
), pp.
2743
51
.
3.
Epureanu
,
B. I.
,
Yin
,
S. H.
, and
Derriso
,
M. M.
, 2005, “
High-Sensitivity Damage Detection Based on Enhanced Nonlinear Dynamics
,”
Smart Mater. Struct.
0964-1726,
14
(
2
), pp.
321
327
.
4.
Ghafari
,
S.
, 2007, “
A Fault Diagnosis System for Rotary Machinery Supported by Rolling Element Bearings
,” Ph.D. thesis, University of Waterloo, Waterloo, ON.
5.
Yin
,
S. -H.
, and
Epureanu
,
B.
, 2007, “
Experimental Enhanced Nonlinear Dynamics and Identification of Attractor Morphing Modes for Damage Detection
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
6
), pp.
763
770
.
6.
Basso
,
M.
,
Giarré
,
L.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 1998, “
Numerical Analysis of Complex Dynamics in Atomic Force Microscopes
,”
Proceedings of the IEEE International Conference on control Applications
, Trieste, Italy, pp.
1026
1030
.
7.
Ashhab
,
M.
,
Salapaka
,
M.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 1999, “
Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy
,”
Nonlinear Dyn.
0924-090X,
20
(
3
), pp.
197
220
.
8.
Ashhab
,
M.
,
Salapaka
,
M.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 1999, “
Dynamical Analysis and Control of Microcantilevers
,”
Automatica
0005-1098,
35
(
10
), pp.
1663
1670
.
9.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2002, “
Nonlinear Dynamics of Microcantilevers in Tapping Mode Atomic Force Microscopy: A Comparison Between Theory and Experiment
,”
Phys. Rev. B
0556-2805,
66
(
11
), p.
115409
.
10.
Raman
,
A.
, and
Hu
,
S.
, 2006, “
Chaos in Dynamic Atomic Force Microscopy
,”
2006 International Symposium on Nonlinear Theory and Its Applications
, Bologna, Italy, pp.
911
914
.
11.
Jamitzky
,
F.
,
Stark
,
M.
,
Bunk
,
W.
,
Heckl
,
W.
, and
Stark
,
R.
, 2006, “
Chaos in Dynamic Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
17
(
7
), pp.
S213
S220
.
12.
Bienstman
,
J.
,
Vandewalle
,
J.
, and
Puers
,
R.
, 1998, “
Autonomous Impact Resonator: A New Operating Principle for a Silicon Resonant Strain Gauge
,”
Sens. Actuators, A
0924-4247,
66
(
1–3
), pp.
40
49
.
13.
Wang
,
Y. C.
,
Adams
,
S. G.
,
Thorp
,
J. S.
,
MacDonald
,
N. C.
,
Hartwell
,
P.
, and
Bertsch
,
F.
, 1998, “
Chaos in MEMS, Parameter Estimation and Its Potential Application
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
45
(
10
), pp.
1013
1020
.
14.
De
,
S. K.
, and
Aluru
,
N.
, 2006, “
Complex Nonlinear Oscillations in Electrostatically Actuated Microstructures
,”
J. Microelectromech. Syst.
1057-7157,
15
(
2
), pp.
355
369
.
15.
DeMartini
,
B.
,
Butterfield
,
H.
,
Moehlis
,
J.
, and
Turner
,
K.
, 2007, “
Chaos for a Microelectromechanical Oscillator Governed by the Nonlinear Mathieu Equation
,”
J. Microelectromech. Syst.
1057-7157,
16
(
6
), pp.
1314
1323
.
16.
Zhang
,
Y.
,
Wang
,
Y. S.
,
Li
,
Z. H.
,
Huang
,
Y. B.
, and
Li
,
D. C.
, 2007, “
Snap-Through and Pull-In Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading
,”
J. Microelectromech. Syst.
1057-7157,
16
(
3
), pp.
684
693
.
17.
Krylov
,
S.
, 2007, “
Lyapunov Exponents as a Criterion for the Dynamic Pull-In Instability of Electrostatically Actuated Microstructures
,”
Int. J. Non-Linear Mech.
0020-7462,
42
(
4
), pp.
626
642
.
18.
Krylov
,
S.
,
Ilic
,
B. R.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
, 2008, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
0960-1317,
18
(
5
), p.
055026
.
19.
Das
,
K.
, and
Batra
,
R. C.
, 2009, “
Pull-In and Snap-Through Instabilities in Transient Deformations of Microelectromechanical Systems
,”
J. Micromech. Microeng.
0960-1317,
19
(
3
), p.
035008
.
20.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Moehlis
,
J.
,
Demartini
,
B. E.
,
Turner
,
K. L.
, and
Zhang
,
W.
, 2005, “
Nonlinear Response of Parametrically-Excited MEMS
,”
DETC2005: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
1A
, pp.
453
461
.
21.
Zhang
,
W. -M.
, and
Meng
,
G.
, 2007, “
Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation
,”
IEEE Sens. J.
1530-437X,
7
(
3
), pp.
370
380
.
22.
Liu
,
S.
,
Davidson
,
A.
, and
Lin
,
Q.
, 2004, “
Simulation Studies on Nonlinear Dynamics and Chaos in a MEMS Cantilever Control System
,”
J. Micromech. Microeng.
0960-1317,
14
(
7
), pp.
1064
1073
.
23.
Nayfeh
,
A. H.
,
Younis
,
M. L.
, and
Abdel-Rahman
,
E. M.
, 2005, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
0924-090X,
41
(
1–3
), pp.
211
236
.
24.
Towfighian
,
S.
,
Abdel-Rahman
,
E. M.
, and
Heppler
,
G. R.
, 2008, “
Static and Dynamic Analysis of a Bistable Micro-Actuator
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Boston, MA, pp.
1
11
.
25.
Zhang
,
Y.
, and
Zhao
,
Y.
, 2006, “
Numerical and Analytical Study on the Pull-In Instability of Micro-Structure Under Electrostatic Loading
,”
Sens. Actuators, A
0924-4247,
127
(
2
), pp.
366
380
.
26.
Lu
,
M. S.-C.
, and
Fedder
,
G. K.
, 2004, “
Position Control of Parallel-Plate Microactuators for Probe-Based Data Storage
,”
J. Microelectromech. Syst.
1057-7157,
13
(
5
), pp.
759
769
.
27.
Nayfeh
,
A.
,
Younis
,
M.
, and
Abdel-Rahman
,
E.
, 2007, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
0924-090X,
48
(
1–2
), pp.
153
63
.
28.
Najar
,
F.
,
Nayfeh
,
A. H.
,
Abdel-Rahman
,
E. M.
,
Choura
,
S.
, and
El-Borgi
,
S.
, “
Nonlinear Analysis of MEMS Electrostatic Microactuators: Primary and Secondary Resonances of the First Mode
,”
ASME J. Vibr. Acoust.
0739-3717, in press.
29.
Moon
,
F.
, 1992,
Chaotic and Fractal Dynamics
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.