The calibration of complex simulation models for vehicle component and controller development usually relies on numerical methods. In this contribution, a two-level optimization scheme for estimating unknown model parameters in a commercial real-time capable vehicle dynamics program is proposed. In order to increase the reliability of the model coefficients estimated from reference data, the measuring test is improved by methods for the optimal design of experiments. Specifically, the control variables of the experimental setup are adjusted in such a way as to maximize the sensitivity of the parameters in demand with respect to the objective function. The numerical results show that this two-level optimization scheme is capable of estimating the parameters of a multibody suspension model.

1.
Butz
,
T.
,
von Stryk
,
O.
,
Chucholowski
,
C.
,
Truskawa
,
S.
, and
Wolter
,
T. -M.
, 2002, “
Modeling Techniques and Parameter Estimation for the Simulation of Complex Vehicle Structures
,”
High-Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering 21
,
M.
Breuer
,
F.
Durst
, and
C.
Zenger
, eds.,
Springer
,
New York
, pp.
333
340
.
2.
Eberhard
,
P.
,
Piram
,
U.
, and
Bestle
,
D.
, 1999, “
Optimization of Damping Characteristics in Vehicle Dynamics
,”
Eng. Optim.
,
31
, pp.
435
455
.
3.
Pukelsheim
,
F.
, 1993,
Optimal Design of Experiments
,
Wiley
,
New York
.
4.
Bauer
,
I.
,
Bock
,
H. G.
,
Körkel
,
S.
, and
Schlöder
,
J. P.
, 2000, “
Numerical Methods for Optimum Experimental Design in DAE Systems
,”
J. Comput. Appl. Math.
0377-0427,
120
, pp.
1
25
.
5.
Biber
,
E.
, 2000, “
Identifikation der Lastparameter von Industrierobotern
,” MS thesis, Zentrum Mathematik, Technische Universität München.
6.
Körkel
,
S.
, 2002, “
Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen
,” Ph.D. thesis, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg.
7.
TESIS DYNAware
, 2008, DYNA4 User Manual, München.
8.
Rill
,
G.
, 1994,
Simulation von Kraftfahrzeugen
,
Vieweg
,
Braunschweig
.
9.
Esterl
,
B.
,
Butz
,
T.
,
Simeon
,
B.
, and
Burgermeister
,
B.
, 2007, “
Real-Time Integration and Vehicle Trailer-Coupling by Algorithms for Differential-Algebraic Equations
,”
Veh. Syst. Dyn.
0042-3114,
45
(
9
), pp.
819
834
.
10.
Gilg
,
M.
, 2004, “
Parameteridentifizierung und-optimierung am Beispiel einer Hinterachskinematik
,” MS thesis, Zentrum Mathematik, Technische Universität München.
11.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
0040-1706,
34
(
1
), pp.
15
25
.
12.
Gill
,
P. E.
,
Murray
,
W.
,
Saunders
,
M. A.
, and
Wright
,
M. H.
, 1992, “
Some Theoretical Properties of an Augmented Lagrangian Merit Function
,”
Advances in Optimization and Parallel Computing
,
P. M.
Pardalos
, ed.,
North-Holland
,
Amsterdam
, pp.
101
128
.
13.
Gill
,
P. E.
,
Murray
,
W.
,
Saunders
,
M. A.
, and
Wright
,
M. H.
, 1998, “
User’s Guide for NPSOL 5.0: A Fortran Package for Nonlinear Programming
,” Technical Report No. NA 98-2, Department of Mathematics, University of California.
14.
Dongarra
,
J.
, and
Grosse
,
E.
, 2006, “
Netlib Repository
,” http://www.netlib.orghttp://www.netlib.org
15.
Moré
,
J. J.
, 1978, “
The Levenberg-Marquardt Algorithm: Implementation and Theory
,”
Numerical Analysis. Lecture Notes in Mathematics 630
,
A.
Dold
and
B.
Eckmann
, eds.,
Springer
,
New York
, pp.
105
116
.
16.
Lohmann
,
T. W.
, and
Bock
,
H. G.
, 1996, “
A Computationally Convenient Statistical Analysis of the Solution of Constrained Least-Squares Problems
,” Technical Report No. 96-7, Zentrum Mathematik, Technische Universität München.
17.
Stadler
,
M.
, 2006, “
Optimale Versuchsplanung zur Identifizierung von Fahrzeugparametern
,” MS thesis, Zentrum Mathematik, Technische Universität München.
18.
Kelley
,
C. T.
, 1999, “
Iterative Methods for Optimization
,”
Frontiers in Applied Mathematics 18
,
SIAM
,
Philadelphia
.
19.
Choi
,
T. D.
,
Eslinger
,
O. J.
,
Gilmore
,
P. A.
,
Kelley
,
C. T.
, and
Patrick
,
H. A.
, 2001, “
User’s Guide to IFFCO
,” Technical Report No. CRSC-TR01-17, Center for Research in Scientific Computation, North Carolina State University.
20.
Hemker
,
T.
, 2009, “
Derivative Free Surrogate Optimization for Mixed-Integer Nonlinear Black Box Problems in Engineering
,” Fortschritt-Berichte VDI, Reihe 10: Informatik/Kommunikation, No. 797, VDI-Verlag.
22.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
(
4
), pp.
455
492
.
23.
Sasena
,
M. J.
, 2002, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,” Ph.D. thesis, University of Michigan.
24.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
, 1997, “
User’s Guide for SNOPT 5.3: A Fortran Package for Large-Scale Nonlinear Programming
,” Technical Report No. SOL 97-3, Stanford University.
You do not currently have access to this content.